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Prediction of Treatment Response 
to Neoadjuvant Chemotherapy for 
Breast Cancer via Early Changes in 
Tumor Heterogeneity Captured by 
DCE-MRI Registration
Nariman Jahani1, Eric Cohen1, Meng-Kang Hsieh1, Susan P. Weinstein1, Lauren Pantalone1, 
Nola Hylton2, David Newitt2, Christos Davatzikos1 & Despina Kontos   1

We analyzed DCE-MR images from 132 women with locally advanced breast cancer from the I-SPY1 
trial to evaluate changes of intra-tumor heterogeneity for augmenting early prediction of pathologic 
complete response (pCR) and recurrence-free survival (RFS) after neoadjuvant chemotherapy (NAC). 
Utilizing image registration, voxel-wise changes including tumor deformations and changes in DCE-
MRI kinetic features were computed to characterize heterogeneous changes within the tumor. Using 
five-fold cross-validation, logistic regression and Cox regression were performed to model pCR and RFS, 
respectively. The extracted imaging features were evaluated in augmenting established predictors, 
including functional tumor volume (FTV) and histopathologic and demographic factors, using the 
area under the curve (AUC) and the C-statistic as performance measures. The extracted voxel-wise 
features were also compared to analogous conventional aggregated features to evaluate the potential 
advantage of voxel-wise analysis. Voxel-wise features improved prediction of pCR (AUC = 0.78 (±0.03) 
vs 0.71 (±0.04), p < 0.05 and RFS (C-statistic = 0.76 ( ± 0.05), vs 0.63 ( ± 0.01)), p < 0.05, while models 
based on analogous aggregate imaging features did not show appreciable performance changes 
(p > 0.05). Furthermore, all selected voxel-wise features demonstrated significant association with 
outcome (p < 0.05). Thus, precise measures of voxel-wise changes in tumor heterogeneity extracted 
from registered DCE-MRI scans can improve early prediction of neoadjuvant treatment outcomes in 
locally advanced breast cancer.

For women with locally advanced breast cancer, longitudinal patterns of tumor response during neoadjuvant 
chemotherapy (NAC) can be an important marker in evaluating treatment response and likelihood for overall 
survival. When dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is part of the NAC pro-
tocol, in addition to assessing structural changes in tumor size and shape, it provides an opportunity to evaluate 
changes in enhancement patterns which reflect functional tumor properties as potential earlier indicators of 
treatment response1–3. Towards this end, while much progress has been made, most approaches reported to date 
still have important limitations by either falling short of investigating the tumor longitudinally or by overlooking 
the finer details of the longitudinal imaging phenotype by primarily relying on aggregate measures of tumor 
structure and function4–7. For example, although Hylton et al.6 have shown that measuring the aggregate change 
of functional tumor volume (FTV) during NAC can be an indicator of pathologic complete response (pCR) and 
long-term recurrence-free survival (RFS), FTV does not adequately capture intra-tumor heterogeneity which has 
increasingly been shown to be a major indicator of tumor aggressiveness and treatment resistance8.

As tumors are known to be temporally and spatially heterogeneous and tend to deform regionally during 
treatment9,10, more precise and longitudinal quantification of phenotypic tumor heterogeneity could provide 
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new insight for early prediction of treatment response and long-term survival. To calculate regional longitudinal 
changes, deformable image registration techniques can be used to match images from different imaging ses-
sions voxel-by-voxel11,12. However, the lack of robust image registration techniques has led to many breast cancer 
investigations to overlook voxel-wise approaches for capturing such heterogeneous tumor changes12,13. Recently, 
a registration method based on attribute-matching14 has been developed shown to have improved accuracy com-
pared to conventional intensity-based registration methods15,16. Implementing an accurate image registration 
technique, a parametric response map (PRM)17,18, as well as regional deformation measures19–21, can provide 
quantitative voxel-based information regarding heterogeneous changes within the tumor during treatment.

We evaluated phenotypic changes in tumor heterogeneity, quantified with voxel-wise image registration, 
for augmenting early prediction of pCR and RFS after NAC for locally advanced breast cancer. The rationale 
is to benefit from early-treatment information, captured via a robust deformable image registration technique, 
in order to precisely quantify voxel-wise changes in morphologic, structural, and kinetic tumor features. We 
hypothesize that imaging markers capturing such early changes within the tumor can improve prediction of pCR 
and RFS for women diagnosed with locally advanced breast cancer, and thus providing additional information to 
help better guide their treatment.

Methods
Patient population and data acquisition.  This study was approved by the institutional review board 
of University of Pennsylvania. No consent or waiver was required as data were obtained de-identified from the 
National Cancer Institute’s Cancer Imaging Archive22. The patient population analyzed for our study was a subset 
of the multicenter Investigation of Serial Studies to Predict Your Therapeutic Response with Imaging and moLec-
ular Analysis and American College of Radiology Imaging Network 6657 trial (I-SPY 1 TRIAL/ACRIN 6657) 
which recruited women with T3 tumors who received anthracycline-cyclophosphamide NAC2. Four MR imag-
ing examinations were performed, including pre-treatment (first examination four weeks before the treatment), 
early-treatment (second examination performed at least two weeks after the first cycle of chemotherapy) and 
between treatments (third examination), and fourth examination performed before surgery and after completion 
of NAC.

The data acquisition was previously described according to the ACRIN 6657/ISPY-1 protocols2. In summary, 
DCE-MR scans were collected from nine different centres using 1.5-T MR imaging systems with a dedicated 
breast radiofrequency coil was used to acquire pre- and post-contrast images at each examination. The imaging 
procedure included a localization scan and T2-weighted sequences followed by T1-weighted of DCE-MRI series. 
The T1-weighted sequence was acquired once before contrast injection and at least twice afterwards. The first two 
contrast-enhanced images were acquired 2.5 and 7.5 minutes after contrast injections.

Clinical, demographic, and histopathologic data including age, race and hormone receptor status (coded as 
a three-level categorical variable: 1. HR-positive and Her2-negative, 2. Her2-positive, 3. triple negative) were 
available for each patient (Table 1), as well as functional tumor volume measurements at pre-treatment (FTV1) 
and early-treatment visits (FTV2). Furthermore, the RFS outcomes were reported and measured according to the 
STEEP criteria23, as the time from the first cycle of chemotherapy to disease recurrence or death. The pCR out-
comes were also defined as no remaining invasive cancer in axillary lymph nodes or breast24.

For our study, we focused only on the information extracted from the first two MRI examinations (i.e., at 
pre-treatment and early-treatment visits), as outcome prediction before the initiation or early in the course of 
treatment would be of particular clinical value. From the available 222 I-SPY 1/ACRIN 6657 trial participants, 
limiting ourselves to those with complete clinical and imaging data at pre-treatment and early-treatment vis-
its reduced the analysis set to 142 patients; excluding an additional 10 for whom image registration could not 
complete (see the next section for details of registration). That resulted in a sample of 132 patients available for 
RFS analysis in our study. pCR information was missing for 5 participants, leaving 127 patients for pCR analysis 
(Fig. 1).

Image pre-processing.  Three image pre-processing steps were implemented before quantitative analyses. 
First, a nonparametric non-uniform intensity normalization (N3) method was implemented for bias-field correc-
tion to reduce the negative impact of MR imaging artifacts. Then, histogram matching was done between images 
at pre- and early-treatment for more accurate registration implementation. Finally, all images from different 
patients were resampled to the same spatial resolution to have consistent intensity values for feature extraction.

Deformable image registration and tumor segmentation.  After image pre-processing steps, 
we applied a deformable image registration algorithm to spatially and anatomically align the early-treatment 
MR images to the pre-treatment ones14 (Fig. 2). The registration algorithm is based on attribute matching and 
mutual-saliency weighting. This registration calculates a spatial transformation, T, mapping each voxel, x, to 
its image, T(x). T is computed by minimizing a cost function, E, that is a function of (1) mutual saliency, where 
ms(x1, x2) measures the dissimilarity between two voxels; and (2) attribute matching, where A(x) is a vector 
encoding the anatomic and geometric properties of a voxel:
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where d is the number of image dimensions.
The algorithm has been previously validated for longitudinal MR image registration for breast cancer and 

shown to be significantly more accurate compared to conventional intensity-based registration algorithms19. The 
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rationale in our study is that this accurate matching allows for monitoring changes within the corresponding 
voxels between pre- and early-treatment images. Registration was, therefore, first applied to the entire breast, 
and then, subsequent voxel-wise image analyses were performed within the tumor region of the pre-treatment 
image (FTV1). Thus, FTV1 mask was applied to both pre-treatment and registered early-treatment images to track 
voxel-wise changes within the initial tumor region. A signal enhancement ratio method was used to analyze 
DCE-MR images and segment functional tumor volumes (FTV1 and FTV2)6,25.

Voxel-wise longitudinal imaging features.  Feature maps extraction.  Comparing each pair of corre-
sponding voxels extracted from the registration of pre- and early-treatment DCE-MRI scans, two groups of imag-
ing features were computed to quantify tumor changes: (i) voxel-wise tumor deformation, and (ii) voxel-wise 
changes of kinetic features (PRM of kinetic features):

Voxel deformation measures: Evaluation of voxel deformation provides the opportunity to track how the 
tumor deforms in response to therapy by quantifying regional changes in tumor size, shape and orientation. 
Specifically, three independent voxel-wise measures of tumor deformation were calculated: (1) Jacobian, repre-
senting the volume expansion or contraction of each voxel computed as the ratio of the volume at early-treatment 
image to the corresponding volume at pre-treatment image in a given point, (2) the anisotropic deformation 
index (ADI) a measure of the magnitude of the anisotropic (non-shape-preserving) deformation at each voxel, 
and (3) the slab-rod index (SRI) a measure of the shape (orientation preference) of the anisotropic deformation 
(Fig. 2):

The transformation function T derived from image registration extracts information regarding voxel-wise 
changes in volume and shape between pre-treatment and early-treatment imaging. At a given voxel, the eigenval-
ues of ∇T(∇T)T, λ1, λ2, and λ3, denote the principal strains where λ1 > λ2 > λ3.

Jacobian.  The Jacobian, J, is the voxel-wise volume ratio between early-treatment and pre-treatment images, 
indicating local contraction (Jacobian < 1) or local expansion (Jacobian > 1).

λ λ λ= =−

−
Jacobian

v
v (2)
early treatment

pre treatment
1 2 3

Age

   Mean (sd) 47.87 (8.9)

Race

   White or Hispanic 98 (74.2%)

   Other 34 (25.8%)

Bilateral cancer

   No 130 (98.4%)

   Yes 2 (1.6%)

Laterality

   Left 65 (49.2%)

   Right 67 (50.8%)

Estrogen receptor (ER) status

   Negative 62 (46.9%)

   Positive 70 (53.1%)

Progesterone receptor (PR) status

   Negative 74 (56%)

   Positive 58 (44%)

HER2 status

   Negative 83 (62.9%)

   Positive 49 (37.1%)

Hormone receptor status

   HER2 49 (37.1%)

   HR+ and HER2− 51 (38.6%)

   triple negative 32 (24.3%)

RFS

   Censor 93 (70.5%)

   Event (recurrence or death) 39 (29.5%)

pCR

   No 89 (67.4%)

   Yes 38 (28.8%)

   Missing 5 (3.8%)

Table 1.  Patient characteristics for the ISPY-1/ACRIN 6657 trial sample analyzed in our study.
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Anisotropy indices.  However, the Jacobian is unable to capture information about the directionality and shape 
of local deformation. The anisotropic deformation index (ADI) and the slab-rod index (SRI)26 capture two such 
measures.

The ADI defined at each point as
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It measures how much the local transformation is anisotropic (directional). The ADI ranges from 0 to ∞; 
when λ1 = λ2 = λ3, the ADI is zero implying isotropic deformation (deformation that is equal in all directions, 
shape-preserving deformation), and larger ADI indicates more anisotropy (Fig. 2).

The SRI defined at each point as

λ λ λ λ λ λ
π

=
− −−

SRI tan ( ( )/ ( ))
/2 (4)

1
3 1 2 2 2 3

shows whether the voxel deforms mainly in one direction (rod-like deformation, SRI ≈ 1) or two directions 
(slab-like, SRI ≈ 0) (Fig. 2).

PRMs of kinetic features: Besides deformation, image registration allows for constructing voxel-wise maps of 
changes in enhancement patterns extracted from kinetic features in DCE-MRI, which can be a means of char-
acterizing intra-tumor functional heterogeneity27. Here, we hypothesize that such voxel-wise measures can also 
quantify de novo changes in tumor heterogeneity which can be early indicators of therapy resistance, and thus 
markers of treatment response.

During the acquisition of DCE-MRI scans (a pre-contrast image, at time point t0, followed by two post-contrast 
images, taken at two different delay times after injection of the contrast agent, t1 and t2, respectively), signal inten-
sity of each voxel can be recorded at each time point (I(t)). From that, four kinetic features were computed to 
quantify the enhancement pattern for each voxel: peak enhancement (PE), wash-in slope (WIS), wash-out slope 
(WOS), and signal enhancement ratio (SER).
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Figure 1.  Inclusion and exclusion criteria from the ISPY-1/ACRIN 6657 trial cohort.
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For a given kinetic feature F, to analyze the voxel-wise change in F between the pre-treatment and 
early-treatment visits, we constructed the parametric response map (PRM) for F. Given the transformation T 
between pre-treatment voxels and their corresponding voxels in the early-treatment image, the PRM (of F) at any 
voxel x is defined as

= × −− −PRM x J F T x F x( ) ( ( )) ( ) (9)early treatment pre treatment

J here is the Jacobian, the proportional volume change at x between visits, which scales the value in cases when a 
voxel in one image corresponds to a larger or smaller volume in the other image.

Heterogeneity indices of the imaging features.  Based on prior research17,18, within the FTV1 of each tumor, we 
calculated feature values as the fraction of voxels for each corresponding Jacobian and PRM of kinetic features 
whose value increased between pre- and early treatment visit (i.e., number of voxels with positive value/total 
number of voxels).

For the ADI and SRI features, since anisotropic deformation indicates a single relative measure between each 
corresponding voxels, we calculated the entropy of the corresponding ADI and SRI feature maps to specifically 
quantify the heterogeneity of the tumor deformation28.

∑=
=

Entropy P i log P i( ) ( )
(10)i

N

1
2

where N is the number of values the measure takes over all voxels in the tumor, and P(i) is the probability that the 
feature will be equal to level i at any given voxel. (When ADI or SRI is equally likely to take every value that it takes 
over the image, entropy is low; when it takes some values frequently and others infrequently, entropy is high).

These computations resulted in a total of seven measures for each tumor, namely the proportion of increasing 
voxels for each of the Jacobian, PE, SER, WIS, and WOS features, and the entropy of the ADI and SRI measures 
(Fig. 3).

Figure 2.  Deriving the deformation field from image registration (left) to extract longitudinal voxel-wise image 
features (right).

https://doi.org/10.1038/s41598-019-48465-x


6Scientific Reports |         (2019) 9:12114  | https://doi.org/10.1038/s41598-019-48465-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

Analogous aggregate longitudinal features.  To compare the performance of the proposed voxel-wise 
imaging features with currently established DCE-MRI measures, we calculated analogous, longitudinal 
tumor-wide aggregate features (i.e., mean values within FTVs). As an aggregate analogue to the Jacobian, we 
calculated the tumor-wide change in the entire volume (FTV2/FTV1). For each kinetic feature, the corresponding 
aggregate feature was calculated as the change in its average value:

Δ = −− − −f f f( )/ (11)f early treatment pre treatment early treatment

where f is the average value of the feature (PE, WIS, WOS, SER) over the whole tumor. Aggregate features for the 
pre-treatment and early-treatment images were calculated over FTV1 and FTV2, respectively. This resulted in five 
imaging features for aggregate analyses. No corresponding aggregate features were calculated for ADI and SRI, as 
these measure voxel-wise orientational changes captured specifically and only by image registration.

Statistical analysis.  First, a baseline model including the established covariates of age, race, hormone 
receptor status, and tumor volume (in this case, FTV2) was built and tested. Then, features extracted from 
both voxel-wise and aggregate measures were tested as additions to this baseline model. Logistic regres-
sion was performed to assess the strength of associations of features with pCR, where the area under the 
receiver-operating-characteristic curve (AUC) was used to assess model performance. Cox proportional hazard 
modeling was used for time-to-event analysis to assess the strength of association of features with RFS, where the 
C-statistic was used as a measure of predictive performance29.

For both pCR and RFS, five-fold cross-validation was performed, where the best model for each 
cross-validation loop was selected in two steps: first, using only the training set, each of the seven voxel-wise 
imaging features (five imaging features for the aggregate analysis) was evaluated as a univariable addition to the 
baseline model, and features were ranked based on their performance (AUC for pCR and C-statistic for RFS). 
Then, best subset model selection was used where seven (again, five for aggregate models) models were built and 
evaluated: one with the single best feature, one with the two best features, and so on, where the Akaike informa-
tion criterion (AIC) was used to choose the best multivariable model from these seven (or five) models. Finally, 
the selected model was applied to the unseen test set, and the AUC or C-statistic was calculated. Averaging over 
all five cross-validation loops, the mean AUC or C-statistic was used as the final, cross-validated, measure of 
model performance.

To estimate the odds ratios or hazard ratios for each model (voxel-wise or aggregate), the features selected 
in more than 80% of the cross-validation loops (4 or 5) were then used in multivariable models fitted to the 
full dataset. Using the likelihood ratio test, the proposed voxel-wise and aggregate models were compared 

Figure 3.  Outline of the process of voxel-wise analysis using deformable registration. (a) Acquiring DCE-
MRI before and during neoadjuvant chemotherapy. (b) Applying deformable image registration to derive the 
transformation field, followed by segmentation of functional tumor volume. (c) Utilizing the deformation 
field for voxel-wise quantification of two groups of feature maps within the tumor: 1. Voxel-wise deformation 
features, including the Jacobian showing regional volume ratio and anisotropic deformation measures of 
directional deformation 2. Parametric response maps (PRM) showing kinetic feature variation. (d) Building 
multivariable models using the top voxel-wise feature values, and comparing their performance with that of the 
corresponding aggregate feature models in predicting recurrence-free survival (RFS) and pathologic complete 
response (pCR).
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with the baseline model to assess their added value as covariates. Furthermore, RFS analysis was evaluated via 
Kaplan-Meier plots and survival ratios derived from hazard as predicted from the model — a participant’s risk 
signature — dichotomized at the median into high- and low-risk groups. For a given model, the risk signature of 
each participant was defined as that participant’s values of the covariates in the model (age, race, hormone recep-
tor status, FTV2, and selected imaging features) weighted by the corresponding coefficients of those covariates 
in the model, to arrive at a predicted risk score30,31. The p-value of 0.05 cutoff was used to determine statistical 
significance throughout. Statistical analysis was conducted using R (R version 3.3.2, R Foundation for Statistical 
Computing, Vienna, Austria).

Results
Patient population.  Of 132 participants used in our study for RFS analysis, 39 had an event (recurrence 
or death), over a median follow-up time of 3.62 years. Of the 127 participants for whom the pCR outcome was 
recorded, 38 experienced pCR (Table 1).

Pathologic complete response.  The baseline model for pCR had a mean cross-validated AUC = 0.71 
(Supporting Information Table S1). Hormone receptor status had a statistically significant association with pCR 
in this multivariable model (odds ratio: 2.06, p < 0.05) whereas FTV2 and other clinical variables had no statisti-
cally significant associations with treatment response (p > 0.05). Adding the voxel-wise features to the baseline 
features and using the best models derived as described above (Supplementary Table S2), the performance of the 
baseline model was improved significantly (p < 0.05), resulting in mean cross-validated AUC of 0.78 (Table E3). 
The voxel deformation features (Jacobian, ADI and SRI) were selected in all five folds, while the PRM features, 
PRMWOS and PRMPE were selected twice and once, respectively (Supplementary Table S3 for selected features 
in each fold). In the aggregate-measures models, although some features showed consistency in being selected 
among training sets (e.g., FTV2/FTV1 and ∆WIS were selected in four out of five folds), no model demonstrated 
improvement in performance (AUC = 0.71, p > 0.05). A model based on only the voxel-wise features showed 
mean cross-validated AUC of 0.74, demonstrating better performance than the baseline and aggregate models, 
despite not incorporating standard baseline covariates such as FTV2 and hormone receptor status. Fitting the 
multivariable model to the full dataset, all three selected voxel-wise imaging features showed statistically signif-
icant associations with pCR (p < 0.05), while FTV2 and other aggregate features had no statistically significant 
associations with pCR (Table 2). Furthermore, the model augmented with voxel-wise features showed a statisti-
cally significant improvement over the baseline model, as determined by the likelihood ratio test (p < 0.001) while 
the proposed features in the aggregate model did not (p = 0.14).

Recurrence-free survival.  The baseline model gave a mean cross-validated C-statistic of 0.63 
(Supplementary Table S1). Fitting this model to the full dataset showed a statistically significant association 
of FTV2 with RFS (hazard ratio: 1.81, p < 0.001) while age, race, and hormone receptor status did not show 
associations with RFS (Supplementary Table S1). When adding the voxel-wise features to the baseline model 
(Supplementary Table S4), PRMPE and PRMWIS were selected in all five folds, and Jacobian and SRI were selected 
in 4 folds (Supplementary Table S5). Voxel-wise models performed significantly better than the baseline model 
(p < 0.05), with a mean cross-validated C-statistic of 0.76 (Supplementary Table S5). Furthermore, a model based 
on only the voxel-wise features gave a mean cross-validated C-statistic of 0.73, showing better performance than 
the baseline model even without predictors such as FTV2 and hormone receptor status. The aggregate-feature 
models had even lower performance with a mean cross-validated C-statistic of 0.61 (Supplementary Table S5).

Building a Cox model on the full dataset, including the baseline features, and the selected voxel-wise features 
PRMPE, PRMWIS, Jacobian, and SRI (these features were included in four or five of the cross-validation runs), all 
the voxel-wise features showed statistically significant associations with RFS (Table 3). In contrast, in an analo-
gous model, none of the aggregate imaging features had a statistically significant association with RFS (Table 3). 
As was true for pCR modeling, the likelihood ratio test showed that augmenting the model with voxel-wise 
features resulted in a statistically significant improvement over the baseline model, (p < 0.001) while adding the 
aggregate features did not (p = 0.23).

Finally, splitting the patients into low and high-risk groups based on their median risk score signature (Fig. 4) 
gave a significantly higher ratio (i.e., greater separation) of survival probabilities between high-risk and low-risk 

Voxel-wise analysis Aggregate analysis

Selected Features Odds ratio (95% CI) p-value Selected Features Odds ratio (95% CI) p-value

Clinical features

Age 0.97 (0.93–1.02) 0.241 Age 0.81 (0.53–1.25) 0.351

Race 1.73 (0.61–4.87) 0.307 Race 1.14 (0.74–1.74) 0.524

Hormone receptor 
status 2.13 (1.21–3.90) 0.010† Hormone receptor status 2.04 (1.21–3.59) 0.009†

Tumor volume FTV2 0.53 (0.23–0.95) 0.075 FTV2 0.65 (0.32–1.07) 0.158

Proposed features

Jacobian 0.30 (0.12–0.62) 0.003† FTV2/FTV1 0.74 (0.41–1.19) 0.263

ADI 1.89 (1.10–3.41) 0.025† ΔWIS 1.30 (0.87–2.30) 0.248

SRI 1.92 (1.00–3.98) 0.041†

Table 2.  Statistical analysis of voxel-wise versus aggregate features in multivariable pCR models. †p < 0.05.
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patients, when modelling was performed via the final multivariable voxel-wise imaging signature (log-rank 
p < 0.001) rather than using the corresponding selected aggregate features (log-rank p = 0.51). Furthermore, 
when combining the voxel-wise features with the baseline predictors, the performance improved significantly 
(ratio at median survival time = 1.55, log-rank p < 0.001) compared to the performance of the baseline predictors 
alone (ratio at median survival time = 1.11, log-rank p = 0.032).

Figure 4.  Kaplan Meier plots of RFS in cross-validated datasets showing the performance of selected (a) 
aggregate, (b) voxel-wise and (c) baseline and (d) baseline plus voxel-wise features. The voxel-wise model 
indicated a high performance (log-rank p < 0.001), while the aggregate features were unable to separate high-
risk from low-risk patients (log-rank p = 0.513). Also, the selected voxel-wise features in combination with the 
baseline features could improve the baseline model significantly (p < 0.05).

Voxel-wise analysis Aggregate analysis

Selected Features
Hazard ratio 
(95% CI) p-value Selected Features

Hazard ratio 
(95% CI) p-value

Clinical features

Age 0.90 (0.63–1.28) 0.588 Age 0.93 (0.64–1.35) 0.810

Race 1.04 (0.74–1.48) 0.784 Race 0.96 (0.67–1.37) 0.656

Hormone receptor status 1.05 (0.72–1.53) 0.786 Hormone receptor status 0.96 (0.66–1.38) 0.714

Tumor volume FTV2 1.72 (1.28–2.31) 0.002† FTV2 1.95 (1.42–2.69) <0.001†

Proposed features

Jacobian 0.59 (0.38–0.93) 0.023† FTV2/FTV1 0.91 (0.61–1.36) 0.664

PRMPE 2.66 (1.65–4.27) <0.001† ΔPE 0.90 (0.57–1.44) 0.686

PRMWIS 0.56 (0.35–0.89) 0.016† ΔWOS 1.33 (0.97–1.81) 0.067

SRI 2.07 (1.02–4.18) 0.041†

Table 3.  Statistical analysis of voxel-wise versus aggregate features in multivariable RFS models. †p < 0.05.
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Voxel-wise versus aggregate representations.  To better understand the differences between voxel-wise 
and aggregate representations, Fig. 5 demonstrates feature maps for a few representative patients, showing how 
patients with similar aggregate feature values may have different heterogeneity due to different voxel-wise dis-
tributions. Supplementary Figs S1 and S2 show the distributions of proposed imaging features according to the 
treatment outcomes. All feature values except the entropy of ADI for pCR analysis indicated distinct distribution 
(p < 0.05). Furthermore, Supplementary Table S6 summarizes how to interpret the proposed voxel-wise imaging 
features to improve the prediction of pCR and RFS.

Discussion
The importance of early-treatment response assessment in optimizing patient care and treatment adjustment 
have been proven32,33. Our study suggests that voxel-wise longitudinal analyses of DCE-MR images can quantify 
heterogeneous changes within the tumor as an indicator of therapy response and improve prediction of RFS and 
pCR, compared to conventional tumor volume and aggregate kinetic measures, as early as the first treatment time 
point in NAC. Importantly, the proposed voxel-wise features provide information independent of conventional 
predictive covariates such as age, race, hormone receptor status, and tumor volume.

Using registration, we extracted two types of feature maps from the longitudinal data: voxel-wise deforma-
tion, and PRMs of kinetic features. The anisotropy indices (ADI and SRI) in combination with the Jacobian, 
provide a complete descriptor of local tumor deformation26, which can capture heterogeneous changes within 

Figure 5.  Voxel-wise feature map distributions within the tumor. (a,b) Distribution of Jacobian within FTV1 
for two representative patients (left: age 59, triple negative, no event; right: age 62, Her2-positive and a future 
recurrence) with similar volume change ratio (FTV2/FTV1 ≈ 0.85) for both patients. However, 64% of tumor 
voxels in the patient with no recurrence showed expansion (Jacobian >1) while only 25% showed expansion for 
the patient with recurrence. (c,d) Distribution of PRMPE within FTV1 for two representative patients (left: age 
39, HR-positive and Her2-negative, future recurrence; right: age 58, HR-positive and Her2-negative, no event) 
with similar PE2-mean − PE1-mean ≈ 0.50 for both patients. However, 67% of tumor voxels showed increased PE in 
the patient with future recurrence versus only 20% in the patient without an event.
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tumor transformations34. Features based on the PRMs of kinetic features are also important in capturing func-
tional tumor heterogeneity regarding changes in enchantment patterns to augment models of pCR and RFS. It 
should be noted that the consistent selection of the voxel-wise features in most training folds (80% of folds) of the 
cross-validation suggests that they were robust across training sets. The combination of techniques in our study 
—robust registration; use of voxel-wise measures; use of deformation measures and PRMs of kinetic features — 
provide statistically significant improvements over previous similar analyses with conventional tumor volume 
measures and aggregate kinetic features in predicting RFS and pCR2,6.

Although recent investigations for pCR prediction attempted to characterize tumor heterogeneity during 
chemotherapy, quantification of heterogeneity was performed separately at different time points35 without the 
incorporation of image registration, and relative changes were measured by averaging corresponding feature 
values over time13. Cho et al. evaluated the PRM of signal intensity during chemotherapy to predict pCR but in 
sub-volumes rather than voxels36. Our results suggest that using longitudinal voxel-wise markers, even without 
tumor volume, can outperform conventional approaches for the prediction of both RFS and pCR.

There were some limitaions in our study, one was the relatively small sample size of the patients (132 partici-
pants for RFS, 127 for pCR) with a low number of events (39 for RFS and 38 for pCR). We, therefore, limited our 
evaluation to a single first-order feature value for each type of our measures (i.e., percent of voxels with relative 
increase between pre- and early- treatment scans and entropy of anisotropic deformations) to avoid overfitting 
and used five-fold cross-validation to get a preliminary estimate of the generalizability of our findings. In addi-
tion, although we showed significant improvement in predicting pCR and RFS by extracting voxel-wise temporal 
feature changes, when the I-SPY 1 TRIAL was conducted (i.e., from May 2002 to March 2006) temporal resolu-
tions were set to 2.5 and 7.5 minutes for post-contrast images. As DCE-MRI was still relatively in its early stages, 
these temporal resolutions were considered standard of care, especially when considering the multi-institutional 
setting of I-SPY 1 and the need to standardize acquisitions across sites. However, recent advances in MRI tech-
niques provide significantly higher temporal resolution, and according to recommendations from EUSOMA 
for breast imaging, the minimum temporal resolution should be less than 2 minutes37. It has been shown that 
the most informative feature values for tumor characterization should be available at 2 minutes or less after the 
injection of contrast agent38. Thus, the delayed phase of post-contrast images in this study may not fully utilize the 
most valuable feature information in predicting pCR and RFS. We hypothesize that using the proposed feature 
maps with more current, advanced MRI techniques would enhance the prediction of RFS and pCR even further.

Furthermore, since neoadjuvant trastuzumab was not used as standard therapy until 2005, most patients with 
HER2+ were only under neoadjuvant chemotherapy in this study; there were only a few (n = 16) that got tras-
tuzumab but those were excluded from the original I-SPY 1 trial imaging analysis for consistency6, which we 
also did for the purposes of our study. However, currently, patients with HER2+ usually also use targeted ther-
apy drugs including trastuzumab (Herceptin) and pertuzumab (Perjeta) which improve pathologic complete 
response and overall survival when added to chemotherapy39. Therefore, it would be necessary to investigate the 
performance of the imaging signatures proposed here on the outcomes for HER2+ patients who have received 
the targeted therapies in addition to neoadjuvant chemotherapy.

To address above limitations, we plan to perform such an evaluation when the imaging data from a larger 
independent validation data set become available. The current work can also be extended by applying these analy-
ses to longitudinal images at additional mid- and late- treatment time points to better characterize heterogeneous 
tumor responses and the effects of treatment over time. Also, combining these first-order voxel-wise deforma-
tions and PRMs of kinetic features with second- and third order voxel-wise imaging features, such as texture and 
shape-based features, may provide even more predictive signatures in treatment response assessment30,40.

In conclusion, we demonstrated that evaluation of voxel-wise changes in longitudinal analyses of DCE-MR 
images can reveal valuable phenotypic tumor heterogeneity markers to significantly improve early therapy 
response prediction compared to conventional tumor volume and aggregate kinetic measures, as early as the first 
treatment time point. Such phenotypic markers can be derived from imaging that is the current standard of care 
in neoadjuvant chemotherapy response assessment, and thus potentially provide valuable information with no 
additional invasive procedures to better tailor treatment selection for individual patients.
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