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overview

Advances in tissue analysis methods, image analysis, high-throughput molecular profiling, and computational

tools increasingly allow us to capture and quantify patient-to-patient variations that impact cancer risk,

prognosis, and treatment response. Statistical models that integrate patient-specific information from

multiple sources (e.g., family history, demographics, germline variants, imaging features) can provide in-

dividualized cancer risk predictions that can guide screening and prevention strategies. The precision, quality,

and standardization of diagnostic imaging are improving through computer-aided solutions, and multigene

prognostic and predictive tests improved predictions of prognosis and treatment response in various cancer

types. A common theme across many of these advances is that individually moderately informative variables

are combined into more accurate multivariable prediction models. Advances in machine learning and the

availability of large data sets fuel rapid progress in this field. Molecular dissection of the cancer genome has

become a reality in the clinic, and molecular target profiling is now routinely used to select patients for various

targeted therapies. These technology-driven increasingly more precise and quantitative estimates of benefit

versus risk from a given intervention empower patients and physicians to tailor treatment strategies that match

patient values and expectations.

INTRODUCTION

Individualization of patient care has long been the goal
of medicine. The Ebers Papyrus written in Egypt in
1500 B.C. provides the following personalized treat-
ment recommendations “…for a person who suffers
from abdominal obstruction and you find [on physical
examination] that it goes-and-comes under your fin-
gers like oil-in-tube, then prepare for him fruit-of-the-
dompalm, dissolve in semen, crush and cook in oil and
honey…,” on the other hand if a person suffers from
abdominal obstruction “…and his stomach is swollen
and his chest asthmatic, then make for him worm-
wood, elderberries, sebesten, sesa chips, crush and
cook in beer.”1 One could argue that the history of
medicine is the history of increasingly more sophisti-
cated personalization of treatment that involves pro-
gressively narrower definitions of disease and selective
treatments based on understanding of biology. Most
of our current disease terminologies date back to the
19th century and are based on anatomic and micro-
scopic observations paired with clinical descriptions of
symptoms. However, dramatic advances in molecular
and cell biology, medical imaging, and computer
science, as well as increasingly rigorous standards for
clinical research, are fundamentally changing how we
think about cancer and formulate treatment strategies
for our patients. Oncology has reached an inflection

point; many of the classic disease definitions started to
lose practical value, and for good reason. Generic
disease terms like “breast cancer” became so vague
and imprecise in the context of contemporary knowledge
and diagnostic technologies that it has almost lost its
value in determining how to act on this diagnosis.
Contemporary state-of-the-art diagnoses increasingly
capture the large patient-to-patient variations that
impact cancer risk, prognosis, and treatment re-
sponse. This article briefly reviews advances in imaging
technologies and the use of molecular tests to guide
treatment selection; focusing on breast cancer as an
example, we also discuss the rapidly emerging field of
artificial intelligence (AI) to aid diagnosis and reduce
undesirable interobserver variance in clinical activities.

OPTIMIZING ADAPTIVE IMAGING IN THE CLINICAL
MANAGEMENT OF BREAST CANCER

Imaging is a standard diagnostic procedure in the
clinical management of breast cancer; however, its
application to personalized treatment is rapidly evolving
and requires reassessment of how imaging is performed
and how information is derived. The growing field
of quantitative imaging biomarkers recognizes the
need for standards that address each of the stages
of imaging technology, including the imaging device
itself (“scanner”), the image reconstruction process,
and the method of image quantification.2-4 Each of
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these elements contributes to the overall performance of the
imaging biomarker and has to be considered in the opti-
mization process. In breast cancer care, much is being
learned in the neoadjuvant treatment setting where the
status of the tumor can be monitored during systemic
treatment. MRI has evolved as an effective imaging method
for assessing tumor response during neoadjuvant treat-
ment and is used here as an example of the benefits and
challenges of adaptive imaging. This application highlights
several overarching considerations for optimizing imaging
markers for use in personalized treatment strategies, in-
cluding the need to balance potentially competing require-
ments for clinical assessment and biomarker performance
and the need for subtype-specific optimization of imaging
markers.

Image-Acquisition Considerations

A challenge to the adoption of imaging markers in clinical
practice is the need to control for variabilities at the time of
image acquisition that can compromise quantitative mea-
surements, even if they do not adversely impact diagnostic
accuracy. This is particularly critical if repeated measures
are used to assess change over time. Imaging technol-
ogies for breast cancer are designed primarily for cancer
screening. MRI image acquisition methods for screening
have been engineered to emphasize anatomic clarity and
speed. This can often involve the use of image enhance-
ments and filters to improve contrast-to-noise and improve
lesion conspicuity; however, these strategies can introduce
errors and site-to-site variability to the measured signal.
Scan time reduction strategies are used to improve effi-
ciency in the clinic, often at the expense of measurement
fidelity. In the clinical setting it is commonplace to adjust
image acquisition protocols on a patient-by-patient basis to

accommodate differences in body habitus or anatomy.
Intelligent software systems on many scanners will often
accommodate these adjustments by automatically modi-
fying other image acquisition parameters. These measures
improve diagnostic efficiency, but biomarker imaging re-
quires that acquisition techniques also prioritize quantitative
accuracy. Controllable errors must be minimized, and this
can often come at the expense of spatial resolution and scan
time. Inter- and intrapatient variability are minimized using
more restrictive protocols, controlled introduction of soft-
ware and hardware upgrades, and limited allowances for
patient-specific adjustments. These requirements are often
at odds with the strategies used to optimize clinical imaging
and can add steps to the clinical workflow. These conflicting
incentives hinder the ability to ensure high-fidelity data for
imaging biomarker development and testing.2,5 A retro-
spective study performed in the I-SPY breast cancer neo-
adjuvant trial examined the influence of protocol adherence
on the ability of functional tumor volume, a biomarker de-
rived from breast MRI, to predict pathologic complete re-
sponse (pCR). Functional tumor volume is used as part of
the response-adaptive design of the I-SPY2 trial to adjust
randomization in favor of arms showing early benefit over
control.6 Multicenter MRI data used in the study followed
a prescribed protocol and met acceptance criteria. Protocol
adherence was rated for seven technical and quality factors,
including acquisition duration, early phase timing, field of
view, spatial resolution, contralateral image quality, patient
motion, and contrast administration. The area under the
receiver operating characteristic curve was used to measure
the performance of functional tumor volume change in
predicting pCR. Functional tumor volume changes with
adherent image quality in all factors had higher estimated
area under the receiver operating characteristic curve than
did those with nonadherent image quality, although the
differences did not reach statistical significance. The study
highlighted the impact of protocol adherence and data
quality on predictive performance.7

MRI of Neoadjuvant Response

Of breast imaging methods, MRI is particularly effective for
visualizing the effects of neoadjuvant treatment on breast
tumors. MRI signals reflect spatial and functional properties
of tissue and provide noninvasive information about tumor
burden and biologic heterogeneity, giving it great potential to
serve as a biomarker. In the neoadjuvant setting, breast MRI
has been evaluated in numerous studies for its ability to
detect residual disease and to predict response. Accurate
detection and delineation of residual disease has the po-
tential to improve surgical outcomes and perhaps remove
the need for surgery for women achieving pCR. There is
growing interest in this goal as more effective treatments
have led to higher rates of pCR. MRI has been found to be
more effective than clinical examination and other routine

PRACTICAL APPLICATIONS

• The most accurate cancer risk and prognostic
risk models integrate variables from multiple
sources. Do not guesstimate; use a validated
multivariable model if available.

• Molecular variables and anatomic tumor (T, N)
stage tend to provide independent information
about clinical outcome and, therefore, com-
plement each other. Use all information that is
available to provide the most accurate outcome
estimates.

• Quantitative estimates of probable clinical
outcome and predicted benefit from a given
intervention are now available for many clinical
situations. These tools enable patients to tailor
treatment strategies to their own risk/benefit
tolerance level.

Personalizing Treatment Plans Through Technology
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imaging modalities (mammography and ultrasound) for
residual disease detection.8,9 Studies examining agreement
between MRI and residual disease size on histopathology
have found it to vary by subtype, with higher agreement
reported among HER2+ and triple-negative breast cancer
(TNBC) tumors.10 Initial studies reported lower agreement
in hormone receptor–positive tumors, which often have
more diffuse residual disease that is undetectable by MRI.
However, a recent literature review on subtype-specific MRI
performance in detecting pCR concluded that MRI accu-
racy in detecting pCR is not as clearly associated with
subtype as individual studies initially suggested.11

It is well understood that the intrinsic resolving power of MRI
limits its ability to detect microscopic residual disease and,
thus, its ability to discern between true pCR and minimal
residual disease. This limits the use of MRI as a definitive
imaging surrogate for surgical exploration to confirm pCR,
although several studies are investigating approaches
combining imaging and biopsy to explore the potential to
avoid surgery.12-14

Perhaps more relevant to the personalization of treatment is
the ability of imaging to predict treatment outcome when
measured early in the course of treatment. Early noninvasive
indicators of treatment effectiveness could provide a basis
for modifying treatment plans, making de-escalation pos-
sible for patients showing excellent response and a rec-
ommended change in therapy for those with minimal
response. Although MRI has limited accuracy for verifying
pCR, it is very effective at determining the extent of disease
for large breast tumors and at measuring changes with
treatment. Studies examining the early predictive ability of
MRI have found greater accuracy compared with other
imaging methods in predictive performance across breast
cancer subtypes.15 For early response prediction, func-
tional characteristics can add information to measurements
of tumor dimensions alone. A multitude of measurement
methods, including radiomics approaches, can be used to
quantify tumor properties. Timing of early assessment is an
additional variable. Two systematic reviews of the literature
that examined the accuracy of MRI for early prediction of
subsequent pathologic response to neoadjuvant therapy
found that the large heterogeneity of methodologic ap-
proaches made comparison of results difficult and pre-
cluded definitive conclusions.16,17 It is likely that machine
learning and AI technologies will be an integral part of the
development and maturation of imaging markers and their
integration into treatment response prediction models.18

The marked variability in neoadjuvant chemotherapy re-
sponse among different molecular subtypes of breast
cancer is well established. Biomarker development, in-
cluding imaging biomarkers, requires optimization by tumor
subtype to maximize their usefulness.19 Subtype-optimized

models developed in the I-SPY2 trial have been used to
design a de-escalation strategy that combines subtype-
specific MRI predictive probabilities with midtreatment
percutaneous core biopsy pathology to select candidates
who can be safely offered the option to skip the doxorubicin-
cyclophosphamide component of their treatment, because
the probability of achieving pCR after the initial 12 weeks of
taxane-based chemotherapy is very high. The combined
rule was found to result in a 91% positive predictive value
and 61% sensitivity for pCR and is being evaluated in the
I-SPY2 trial.20

To fully realize the potential of response-adaptive treatment
strategies to truly personalize treatment, information from
multiple sources, including clinical risk variables, imaging,
genomic profiles, histopathology, and circulating tumor
markers, will have to be combined and adjusted for the
relative subtype dependencies of these variables. As with
each variable in the model, imaging needs to provide
measurements that are reliable, timely, cost effective, and
independently informative. New standards for quantitative
imaging are being developed along with new data-analytics
techniques that will enable construction of clinically relevant
tools to individualize treatment plans.

UTILIZING MOLECULAR TESTS TO ASSESS RESPONSE
TO THERAPY

Breast cancer is a clinically and molecularly heterogeneous
disease; prognosis and treatment options vary widely be-
tween different subtypes and stages of disease. Hormone
receptor and HER2 status are well-known markers for
beneficial hormonal and HER2-targeted treatments. Yet,
a substantial subset of patients experiences over- or
undertreatment using only these markers for treatment
selection. To improve outcomes, better patient selection is
essential, which motivates the development of improved
and new predictive markers to enable personalized treat-
ment. Successful predictive biomarkers reflect a relevant
biologic process, are accurate and reproducible, and enable
identification of two or more patient subgroups with a dif-
ferential outcome to a specific treatment.21 These concepts
of analytical validity, clinical validity, and clinical utility,
which are applicable to all diagnostic, prognostic, and
predictivemarkers, are summarized in Fig. 1. In this section,
we briefly discuss predictive biomarkers in the context of
breast cancer management; these illustrate the substantial
progress and challenges that characterize molecular bio-
marker development in general.

HER2-Targeting Treatment

HER2 protein overexpression and gene amplification are
predictive markers for HER2-targeting therapies.22 Com-
bining multiple HER2-targeting drugs has increased re-
sponse rates, but there remains a subgroup of patients
that does not benefit from these drugs despite HER2
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amplification. Identifying these patients may spare them
from unsuccessful treatment, and understanding the
mechanisms of resistance could lead to more effective new
drugs. Novel markers that might refine the predictive values
of HER2 protein expression/gene amplification include
HER2 messenger RNA expression level, HER2-enriched
molecular subtype, and various immune-related markers
that are each associated with higher pCR rates and better
survival following HER2-targeted therapies.23,24 A multigene
model using messenger RNA expression data from patients
with HER2+ inflammatory breast cancer who were randomly
selected to receive paclitaxel and trastuzumab, with or
without lapatinib, was predictive of pCR, with an impressive
area under the receiver operating characteristic curve of
0.76 in the CALGB 40601 trial.25 However, standardization
and independent validation of this and other gene signa-
tures are yet to be accomplished. How to predict the need
for, and benefit from, individual components of multidrug
HER2-targeted regimens also remains unsolved. In the
NeoALTTO trial, a substantial interaction was found be-
tween immune and stromal gene expression signatures and
pCR with trastuzumab plus lapatinib combined with pac-
litaxel versus one HER2-targeted drug and paclitaxel;
however, this interaction was not seen for survival out-
comes.24 In the NeoSphere study, patients with HER2
membrane protein expression above the median had a
marked benefit from the addition of pertuzumab to docetaxel
and trastuzumab, whereas there was no benefit for patients
with expression that was below the median.26 These are
select examples of intriguing findings that will require in-
dependent validation.

Sensitivity to HER2-targeting agents does not completely
rely on HER2 overexpression; activating mutations in the
HER2 gene can confer sensitivity to single-agent neratinib
(HER2 kinase inhibitor), and neratinib may even have ac-
tivity in the absence of HER2 mutation or gene amplifica-
tion. In the I-SPY2 trial, high STMN1 gene expression was
associated with response to neratinib (concurrent with

paclitaxel) in 48 patients with HER2– tumors.27 Further
validation of this biomarker is necessary before imple-
mentation in the clinic.

Immune Checkpoint Inhibition

Immune checkpoint inhibition emerged as a promising new
treatment modality, particularly for TNBC (reviewed in
Radosa et al28). However, overall response rates to single-
agent therapy are low, indicating a pressing need for
a predictive marker. In the metastatic TNBC setting, PD-L1
protein expression emerged as a U.S. Food and Drug
Administration–approved predictive marker to select pa-
tients with TNBC for immune checkpoint therapy. In the
randomized IMpassion130 trial, only PD-L1 immune cell–
positive cancers (with SP142, 22C3, or SP263 assays)
showed improved progression-free survival when atezoli-
zumab was added to nab-paclitaxel. In the KEYNOTE-119
trial, objective response rates and progression-free survival
with single-agent pembrolizumab increased almost linearly
as PD-L1 positivity (22C3 assay) increased. The KEYNOTE-
355 trial that compared pembrolizumab plus chemother-
apy with chemotherapy plus placebo for metastatic TNBC
also demonstrated improvement in progression-free sur-
vival in the pembrolizumab arm, but only in PD-L1+ can-
cers (combined positive score � 10 with 22C3 assay). The
SAFIR02 trial randomly assigned patients with metastatic
breast cancer who had response or stable disease after six
to eight cycles of chemotherapy and did not have any ac-
tionable mutations to receive maintenance single-agent
durvalumab or continuation of chemotherapy. Mainte-
nance durvalumab had inferior progression-free survival in
the entire trial population but resulted in improved overall
survival in the PD-L1+ (SP142 assay) subset of cancers. In
contrast to the metastatic setting, it has not been possible to
identify predictive biomarkers that identify stage II to III
TNBC that selectively benefits from inclusion of immune
checkpoint therapy with neoadjuvant chemotherapy. High
tumor-infiltrating lymphocyte count, high expression of PD-
L1 protein, and a broad range of immune-related genes all

FIGURE 1. Criteria for the Evaluation of Biomarkers
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predict for a higher pCR rate with chemotherapy alone, as
well as with chemotherapy plus immune checkpoint
therapy. Unlike in metastatic TNBC, PD-L1 protein ex-
pression does not define the population that selectively
benefits from neoadjuvant immune checkpoint therapy.
The biologic reasons behind the distinct predictive func-
tions of PD-L1 in metastatic versus early-stage TNBC are
unclear. However, overall, metastatic lesions have a more
immune-attenuated tissue microenvironment, even when
immune cells are present, compared with primary
tumors.29

It is important to note that the performance of PD-L1 as
a predictive biomarker for response to anti–PD-1/PD-L1
therapy shows low predictive accuracy with an area under
the receiver operating characteristic curve of 0.65, even in
metastatic disease. This can be explained by the fact that
PD-L1 status is difficult to assess because of the very low
thresholds applied (1% immune cell positivity with the
SP142 assay or a combined positive score . 10 with the
22C3 assay), intratumor heterogeneity in expression, vari-
able assay sensitivity, and large interobserver variability.30

Tumor mutational burden has emerged as a complemen-
tary assay to define patients, regardless of cancer type, who
might benefit from pembrolizumab immune checkpoint
therapy. The FoundationOne next-generation sequencing
assay is approved by the U.S. Food and Drug Administra-
tion for this purpose. Immune gene signatures, multiplex
immunohistochemistry, and various spatial features of
immune cell infiltration are also actively being investi-
gated as potential complementary predictive markers for
immunotherapy.31

Homologous Recombination Deficiency and

Systemic Therapy

Homologous recombination is the primary pathway that is
responsible for high-fidelity repair of double-strand DNA
breaks. Patients with TNBC and homologous recombina-
tion deficiency due to a biallelic BRCA loss of function
(usually through a combination of germline and somatic
events) respond well to agents that cause double-strand
DNA breaks, such as platinum or anthracycline-containing
chemotherapies. Consequently, it was hypothesized that
patients without BRCA mutations but with genomic “scars”
or gene expression features resembling BRCA-mutant tu-
mors may also have a defect in homologous recombination
and, therefore, might be sensitive to these agents.32 Sub-
sequently, studies in metastatic breast cancer showed that
patients with TNBC that harbor homologous recombina-
tion deficiency (i.e., germline BRCA mutation or homolo-
gous recombination deficiency assay positive) have greater
benefit from platinum chemotherapy than from a micro-
tubule inhibitor, whereas patients with nonhomologous
recombination deficiency have no such differential

sensitivity.33 However, this relationship is not seen in neo-
adjuvant trials.34

Clinical trials also demonstrated substantial single-agent
activity of PARP-1 inhibitors in breast cancers that harbor
germline BRCA1, BCRA2, or PALB2 mutations or somatic
BRCA mutations.35,36 Several methods exist for detection of
homologous recombination deficiency, such as analysis of
sporadic or germline homologous recombination mutations,
copy number signatures, single-nucleotide polymorphism–

based assays, and transcriptional signatures.32,35 Currently,
only germline and somatic BRCA sequencing assays and the
Myriad homologous recombination deficiency assay are used
in the clinic in the United States to select patients for PARP-1
inhibitor therapy.

Rare Actionable Mutations

Next-generation sequencing assays of a few dozen to a few
hundred potential therapeutic target genes are being used
increasingly in the clinic to identify patients with metastatic
cancer for targeted therapies. In estrogen receptor+ metas-
tatic breast cancer, detection of PIK3CA (phosphatidyli-
nositol-4,5-bisphosphate 3-kinase catalytic subunit alpha)
mutations became important after the SOLAR-1 trial dem-
onstrated a benefit from adding the PIK3CA inhibitor alpelisib
to endocrine therapy with fulvestrant, but only in cancers with
somatic mutations in the PIK3CA gene (median progression-
free survival, 11.0 months vs. 5.7 months).37 Other rare, but
potentially actionable, mutations in breast cancer that are
supported by clinical trial data include somatic BRCA mu-
tations (for PARP inhibitors), HER2-activating mutations (for
neratinib), and NTRK1 (tropomyosin receptor kinase A) fu-
sion genes (for larotrectinib). Mutations in the ESR1 (estrogen
receptor 1) gene are also commonly encountered in estrogen
receptor+ metastatic breast cancer, particularly after prior
therapy with aromatase inhibitors. However, the clinical
relevance of this finding is limited to recommending fulvestrant
over exemestane.

Liquid Biopsy Biomarkers

Circulating biomarkers may better reflect intratumor het-
erogeneity than do tissue-based biomarkers and are
amenable to repeated assessment during treatment. Ana-
lyses of mutations in circulating tumor DNA in the MON-
ALEESA-2 trial suggested that patients with an alteration in
receptor tyrosine kinase genes in breast cancer have less
benefit from letrozole plus ribociclib compared with wild-
type cancers.38 In the PALOMA-3 trial, the ratio of baseline/
cycle 5 circulating mutated PIK3CA gene copies was pre-
dictive of progression-free survival benefit with palbociclib.39

In a phase I study of elacestrant, patients with estrogen
receptor mutations in circulating tumor DNA had a much
higher objective response rate than those who did not.40 In
the CirCe T-DM1 trial, patients with HER2� primary tumors,
but HER2-amplified circulating tumor cells, were treated
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with trastuzumab emtansine; unfortunately, only one of 11
patients achieved a partial response.41 These studies
highlight that there may be a lot of potential for liquid bi-
opsies in response prediction, but major challenges must be
overcome.

Challenges and Future Outlooks

Finding clinically useful predictive biomarkers is highly
challenging because of a number of issues, including inter-
and intratumor heterogeneity, variability between assays,
lack of robustness, and insufficient discriminatory accuracy.
Many biomarkers show associations with response to broad
classes of therapeutic agents (e.g., chemotherapy, endo-
crine therapy, HER2-targeted agents, immunotherapy), but
it has been very difficult to find drug-specific biomarkers.
Furthermore, existing biomarkers are better at identifying
who will not have a response to treatment (i.e., high negative
predictive values) than predicting actual response to
treatment (i.e., modest positive predictive value). With the
increasing availability of genomic, transcriptomic, and
proteomic data and the integration of these, we hope to
come closer to developing clinically useful biomarkers.

OPPORTUNITIES AND CHALLENGES TO IMPLEMENTING
ARTIFICIAL INTELLIGENCE IN HEALTH CARE

The past few years have seen an explosion of technologies
powered by AI in health care, from triage and early detection
to diagnosis to therapy.42 Artificial intelligence–powered
imaging and laboratory devices, medical robots, and mobile
services, to mention just a few, almost certainly will improve
the reach of high-quality health care across medical offices
and countries, accelerate precision medicine, and help
patients to proactively manage their health (Fig. 2). This
section introduces promising developments in AI, followed
by an overview of the challenges that still must be addressed
in this field before reaching widespread use.

Decreasing Reader Variability While Improving Workflow

Efficiency Through Artificial Intelligence

Medical imaging plays an important role in cancer di-
agnosis, treatment, and monitoring, but it is highly de-
pendent on the interpretation of readers and their levels of
expertise. The requirement of interpreting large amounts of
complex data has exceeded the capacity of available spe-
cialists and brings new challenges to health care providers,
especially in low- and middle-income countries. Recent
advances in AI algorithms have resulted in substantial
strides in the assessment of radiographic characteristics in
medical images,9 offering considerable promise for im-
proving the efficacy and quality of clinical care. Deep
learning is one form of AI that achieves great success in
automated learning of imaging features when large, well-
annotated databases are available to train the algorithms.43

Artificial intelligence–based computer-aided diagnosis and
detection systems have shown promising results in the early
screening of multiple diseases, including lung cancer,
breast cancer, and prostate cancer, when evaluated against
human operators.42-44 This creates an opportunity to reduce
the variability in screening quality by introducing AI systems
as decision support for radiologists at various levels of
training and experience. Artificial intelligence systems are
also being developed to assist the image reading workflow.
For instance, an AI-based software has been introduced to
automatically process multiparametric MRI scans of the
prostate, allowing radiologists to identify lesions and facili-
tate targeted biopsies more easily.44 Radiation oncology is
also greatly benefiting from AI.45 Delineation of organs at risk
is one of the most time-consuming manual tasks performed
by radiation oncologists. Artificial intelligence has demon-
strated promise in providing comparable autosegmentation
of organs at risk to that of human experts. Additionally, dose

FIGURE 2. Hierarchy of Artificial
Intelligence Systems in Health
Care
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distribution can be potentially optimized by AI approaches
via integrating patient anatomy information and treatment
machine parameters.

FromOutcome Prediction to Patient-Specific Digital Twins

The RECIST criteria are widely used in oncology to assess
treatment response. However, these size-based metrics are
questioned because they oversimplify the complex imag-
ing features of tumors.46 Radiomics analysis was intro-
duced to comprehensively characterize and compare tumor
geometric and textural appearance in images.46 High-
dimensional hand-crafted features can be automatically
computed from images to predict the overall survival of
patients with non–small cell lung cancer in response to
radiotherapy, chemotherapy, or immunotherapy.46,47 Re-
cently, a deep-learning method, DeepProfiler, was introduced
to automatically learn tumor-imaging characteristics that are
associated with prognosis.47 Using the consolidated in-
formation from imaging and clinical variables, DeepProfiler
provided an estimation of local failure of stereotactic body
radiation therapy and enabled individualized dosing to in-
crease tumor control. Studies have also shown the capa-
bility of AI to predict gene mutations from histopathology
images.48 Building on these achievements, researchers
are actively investigating methods that combine radiomics
and genomics information for individualized outcome
prediction.49

Digital twins of patients are also being developed, inspired
by their industrial counterpart. Fueled by the increased
digitalization and broad range of biologic measurements of
functions of the human body, digital twins combine AI with
computational models of human physiology to generate
patient-specific models from medical data (Fig. 3). By in-
tegrating multimodal information, digital twins have the
potential to quantify a patient’s pathophysiology (e.g., tumor
growth rate) more precisely.50,51 The hope is that digital
twins could enable in silico simulation of various interven-
tions and assess their potential effects on the patient before
any treatment begins. For example, an individualized
model of the liver, estimated from images, was used to
predict ablation extent and tumor coverage.52 Digital twins
is also being explored to model multiscale multi-omics
interactions for drug discovery and treatment efficacy
prediction.53

Artificial Intelligence–Assisted Automation and Services

to Improve Access of Care

One of the biggest challenges in health care, within a
country and globally, is to provide equal access to the same
high-quality care. Staff shortages, differences in levels
of provider training and skill, and dissimilarities in in-
frastructure and availability of equipment have created
variable levels of care, including areas known as “medical
deserts.” Digitalization and AI could address some of these

challenges. Artificial intelligence–assisted image reading
aims at improving interrater variability for a more consistent
and precise diagnosis throughout clinical sites. Medical
systems are being reinvented with more intuitive and sim-
plified user experiences thanks to AI-assisted automation.
Minimally invasive procedures are benefiting from auto-
mation to simplify their execution, making them safer and
more cost effective (e.g., through fully automatic multi-
modality image fusion).54 Robotics solutions are assisting
surgeons with performing more precise procedures; they
may even enable highly specialized surgeons to operate on
patients remotely in geographically isolated areas with
modest assistance from a local health care provider.55

Strides are being made in the capability of mobile and
wearable devices to provide consumers and their care
providers with actionable quantitative health information,
from wellness to home monitoring of physical activity and
vital signs after procedures or discharge from the hospital.

Challenges Ahead

Despite the tremendous progress of the past few years,
many challenges still remain to fully harness the potentials
of AI in health care.50 First, scaling up the development of
multimodal AI solutions requires more consolidated access
to data that are still stored in a variety of systems that do not
necessarily share a common data-exchange interface. To
address this challenge, electronic medical records and
standards like Fast Healthcare Interoperability Resources
are facilitating interconnectivity, whereas clinical-decision
support solutions are being deployed to integrate data from
multiple sources into a single common system.56

Second, data privacy needs to be thoroughly ensured. While
regulations are being updated to protect patients and
consumers (e.g., Health Insurance Portability and Ac-
countability Act [United States], California Consumer Pri-
vacy Act, General Data Protection Regulation [Europe]),
privacy-by-design AI technologies are actively being in-
vestigated. For instance, federated learning proposes to
train AI algorithms locally and only pool the resulting models
centrally, alleviating the need to share patient data with
researchers. Homomorphic encryption techniques are be-
ing investigated to encrypt data such that AI processing
can be done on the encrypted file directly, whereas
blockchain architectures are being explored to ensure full
decentralization.57

Third, AI in oncology is challenged by the inherent variability
of the disease and therapies. Each cancer is unique, with
many therapy options possible, making large-scale data
acquisition for AI training challenging. Artificial intelligence
is already contributing to more precise screening and di-
agnosis of the most common cancers (e.g., breast and lung
cancers). Yet, progress in AI theory and engineering is
needed to enable precision medicine at scale, where
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therapy can be tailored to the individual. To that end, re-
searchers are investigating methods based on causality,
reasoning, and self-supervision (e.g., to be able to train
robust and performant AI systems on small data sets).58

Lastly, AI systems are required to provide insights and
confidence estimates about their decision. On one hand,
uncertainty-quantification techniques are being researched
by the community. On the other hand, collaborative systems
of AI modules are being implemented instead of end-to-end
neural networks, to increase transparency and controlla-
bility. Similarly, strategies to minimize biases in AI, a very
important issue, are currently being defined, such as
guidelines for the definition of diverse training cohorts.59

Finally, educational programs in AI for medicine will be
crucial to increase physicians’ literacy in AI, teaching
them about AI’s ever-evolving capabilities and potential
limitations.60

In conclusion, AI and digitalization are poised to transform
health care as we know it. Although challenges still lie
ahead, the community is working tirelessly to find solutions
for safe, privacy-centric, and trustable AI solutions that have
the potential to reduce variability in care throughout regions,
enable more precise diagnosis and therapy, and increase
the reach of high-quality care worldwide.

ADAPTING INDIVIDUALIZED TREATMENT PLANS TO CARE
FOR EACH PATIENT

Individualized treatment plans have come a long way since
the Ebers Papyrus. Personalized recommendations are

incorporated into the entire spectrum of cancer manage-
ment (Fig. 4). For example, multivariate risk-prediction
models (e.g., The Breast and Ovarian Analysis of Disease
Incidence and Carrier Estimation Algorithm, BRCAPRO
breast cancer risk assessment tool, International Breast
Cancer Risk Assessment Study) that incorporate various
combinations of personal information, including age, eth-
nicity, age at menarche, parity, age at first birth, meno-
pausal status, body mass index, history of benign
proliferative breast lesions, mammographic density, and
detailed family history, can provide individualized per-
centage risk estimates of developing breast cancer in the
next 5 to 10 years.61 This information can be used to guide
genetic testing and breast cancer–screening decisions.
Breast cancer mammographic screening also evolved to-
ward increasingly individualized strategies: women with
dense breasts now routinely undergo supplementary
screening with annual ultrasonograms or MRI, and in-
dividuals with very high risk have more frequent screening
than do women with average risk. The reporting of breast
imaging results has been standardized (Breast Imaging
Reporting and Data System, BI-RADS; www.acr.org/Clinical-
Resources/Reporting-and-Data-Systems/Bi-Rads), and the
terminology guides subsequent recommendations for
follow-up procedures. If the diagnosis of invasive breast
carcinoma is established by a breast biopsy, patients are
triaged into one of the three major clinical subtypes of breast
cancer: hormone receptor+, HER2+, or TNBC with distinct
therapeutic implications. The percentage probabilities of
recurrence and overall survival can be estimated for an
individual by combining information from age at diagnosis,
menopausal status, hormone receptor and HER2 status,
tumor proliferative activity (i.e., Ki-67 status), tumor size,
number of positive nodes, histologic grade, and detection
method (i.e., mammographic screening vs. self-palpated)
using a validated multivariate prognostic model (breast.
predict.nhs.uk/tool).

After understanding the baseline risk of recurrence, an
individualized estimate of percentage benefit from various
treatment modalities can be calculated and discussed with
the patient. In hormone receptor+ disease, additional gene
expression–based molecular tests can further refine the
prognostic risk and identify patients who would have ex-
cellent long-term disease-free survival with endocrine
therapy alone.62 These molecular diagnostic tests (e.g.,
Oncotype DX Recurrence Score, MammaPrint, Prosigna,
EndoPredict, Breast Cancer Index) have enabled hundreds
of thousands of women to avoid adjuvant chemotherapy
without jeopardizing their survival. Randomized clinical
trials continue to refine our understanding of how to use
these molecular assays. Most recently, the first interim
results of the RxPONDER trial demonstrated that, even
among patients with one to three positive lymph nodes,

FIGURE 3. Rendering of CT Scans With Artificial Intelligence–Based
Automatic Organ Segmentation (in colors) and Lesion Detection (in yellow)
Data courtesy of University Hospital Erlangen, Erlangen, Germany.
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a subset of postmenopausal women who have a recurrence
score less than 26 do not derive benefit from adjuvant
chemotherapy and can be safely treated with adjuvant
endocrine therapy alone.63 By using molecular diagnostic
tests, we can also make individualized predictions about the
probability of benefit from extending adjuvant endocrine
therapy beyond 5 years.64 The increasing use of pre-
operative chemotherapy in HER2+ and TNBCs allows fur-
ther customization of postoperative adjuvant chemotherapy
based on the extent of residual cancer found at the time of
surgery.65 Patients with substantial residual cancer burden
after neoadjuvant chemotherapy can receive further treat-
ment that improves their recurrence-free survival.

Individualized treatment plans do not end at selecting
systemic adjuvant therapies for early-stage breast cancer;
the previously rather uniform radiation therapy and surgery
treatment strategies are also increasingly flexible and tai-
lored for patient age and risk of locoregional recurrence.
Clinical nomograms can be used to estimate the probability
of finding positive axillary lymph nodes at diagnosis or after
an initial positive sentinel node biopsy, and this information
can guide decisions about subsequent axillary lymph node
dissection or even skipping lymph node sampling alto-
gether.66 Accelerated postlumpectomy radiation treatment
plans also exist that can shorten the traditional 5 weeks of
radiation therapy for selected patients.67

A truly individualized treatment plan cannot be formulated
without input from the patient. We all have different risk-
benefit tolerance; perhaps one of the most important
contributions of the existing prognostic and predictive tools is
that they empower patients to make an informed decision
about the various alternative treatment strategies that are
available to diagnose and treat early-stage breast cancer.

What Is Next?

The past 20 years have seen remarkable progress in di-
agnostic technologies, coupled with the introduction of
several dozen new drugs to treat cancer that have translated
into improved survival for many cancer types. Survival of

early-stage breast cancer has improved by 25% to 40%
during this time period; unfortunately, it continues to show
large variations between regions of the world, as well as by
race and socioeconomic status within the United States.68

Progress in individualizing treatment plans will accelerate
further in the coming years. Adding polygenic risk scores
derived from germline sequencing to clinical risk-prediction
models will likely improve predictions of cancer risk,
which will improve individualization of cancer-screening
strategies. An example is the ongoing WISDOM study
(NCT02620852), which is an adaptive randomized clinical
trial comparing a comprehensive risk-based personalized
screening with traditional annual breast cancer screening.
Artificial intelligence–driven improvements in image anal-
ysis are expected to improve the precision of breast imaging
to distinguish benign lesions from malignant lesions.69

Novel molecular diagnostic tests are emerging in TNBC
and HER2+ breast cancers to refine prognosis beyond the
clinical stage, the same way that gene expression profiling
assays did in hormone receptor+ disease. The extent of
lymphocytic infiltration is showing clinically meaningful
prognostic risk stratification in TNBC,70 and a combination
of HER2 expression, PIK3CA mutation, and molecular
subtype may identify HER2+ breast cancers with excellent
prognosis.71 Clinical trials are underway in HER2+ breast
cancer (CompassHER2-pCR, NCT04266249) and are
planned in TNBC, to explore the potential of using patho-
logic response to neoadjuvant chemotherapy to optimize
chemotherapy intensity. Patients with pCR even after a short
minimally toxic therapy may not need more aggressive sys-
temic therapy, whereas those with residual disease could
receive more treatment after surgery to improve their survival.
Molecular target profiling, which is already used in metastatic
breast cancer to identify potentially targetable molecular ab-
normalities, will likely be explored in the adjuvant/neoadjuvant
treatment setting to accelerate the introduction of effective
targeted therapies in the early-stage curative setting.

Monitoring of circulating tumor DNA is perhaps one of the
most exciting new technologies that could bring about

FIGURE 4. Personalization of Treatment Plans Through Technology Across the Spectrum of Disease Management
Abbreviation: ctDNA, circulating tumor DNA.
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a paradigm shift in monitoring of patients with early-stage
disease who have completed local and systemic thera-
pies. Multiple small studies demonstrated that the pres-
ence of tumor-derived DNA in the blood during follow-up of
asymptomatic clinically cancer-free patients heralds me-
tastatic recurrence in 70% to 80% of patients within 6 to 10
months. Detection of molecular relapse before clinically
apparent metastatic recurrence raises the tantalizing pos-
sibility that early intervention with a “second-line” adjuvant
therapy might avert the impending clinical recurrence.
Molecular monitoring for residual disease in hematologic
malignancies, or for prostate-specific antigen failure in
prostate cancer, followed by early systemic therapy im-
proved recurrence-free survival in leukemias and in prostate
cancer. A clinical trial is now underway to explore this
strategy in estrogen receptor+ early-stage breast cancer
(DARE, NCT04567420).

Most of the examples in this article are taken from the breast
cancer literature because there are extensive data to support

screening of asymptomatic individuals, several clinically vali-
dated prognostic risk-prediction models exist, and molecular
diagnostics tests are used to select patients for adjuvant
chemotherapy. These advances clearly illustrate the evolution
of individualizing treatment recommendations over the past
20 years, enabling personalized screening and de-escalation of
care for many patients, while selecting patients at risk for re-
currence who would benefit from more aggressive therapy.
These same advances are also happening inmost other cancer
types and no doubt will accelerate in the coming years.
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37. André F, Ciruelos E, Rubovszky G, et al; SOLAR-1 Study Group. Alpelisib for PIK3CA-mutated, hormone receptor–positive advanced breast cancer. N Engl J Med.
2019;380:1929-1940.

38. Hortobagyi GN, Stemmer SM, Burris HA, et al. Updated results from MONALEESA-2, a phase III trial of first-line ribociclib plus letrozole versus placebo plus
letrozole in hormone receptor-positive, HER2-negative advanced breast cancer. Ann Oncol. 2018;29:1541-1547.

39. O’Leary B, Hrebien S, Morden JP, et al. Early circulating tumor DNA dynamics and clonal selection with palbociclib and fulvestrant for breast cancer. Nat
Commun. 2018;9:896.

Liefaard et al

22 2021 ASCO EDUCATIONAL BOOK | asco.org/edbook

Downloaded from ascopubs.org by University of California--San Francisco on November 12, 2021 from 128.218.042.073
Copyright © 2021 American Society of Clinical Oncology. All rights reserved. 

http://asco.org/edbook


40. Bardia A, Kaklamani V, Wilks S, et al. Phase I study of elacestrant (RAD1901), a novel selective estrogen receptor degrader, in ER-positive, HER2-negative
advanced breast cancer. J Clin Oncol. Epub 2021 Jan 29.

41. Jacot W, Cottu P, Berger F, et al. Actionability of HER2-amplified circulating tumor cells in HER2-negative metastatic breast cancer: the CirCe T-DM1 trial. Breast
Cancer Res. 2019;21:121.

42. Bi WL, Hosny A, Schabath MB, et al. Artificial intelligence in cancer imaging: clinical challenges and applications. CA Cancer J Clin. 2019;69:127-157.

43. McKinney SM, Sieniek M, Godbole V, et al. International evaluation of an AI system for breast cancer screening. Nature. 2020;577:89-94.

44. Winkel DJ, Wetterauer C, Matthias MO, et al. Autonomous detection and classification of PI-RADS lesions in an MRI screening population incorporating
multicenter-labeled deep learning and biparametric imaging: proof of concept. Diagnostics (Basel). 2020;10:951.

45. Huynh E, Hosny A, Guthier C, et al. Artificial intelligence in radiation oncology. Nat Rev Clin Oncol. 2020;17:771-781.

46. Aerts HJWL, Velazquez ER, Leijenaar RTH, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun.
2014;5:4006.

47. Lou B, Doken S, Zhuang T, et al. An image-based deep learning framework for individualising radiotherapy dose: a retrospective analysis of outcome prediction.
Lancet Digit Health. 2019;1:e136-e147.

48. Coudray N, Ocampo PS, Sakellaropoulos T, et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep
learning. Nat Med. 2018;24:1559-1567.

49. Murdoch WJ, Singh C, Kumbier K, et al. Definitions, methods, and applications in interpretable machine learning. Proc Natl Acad Sci USA. 2019;
116:22071-22080.

50. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25:44-56.

51. Anderson ARA, Weaver AM, Cummings PT, et al. Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell.
2006;127:905-915.

52. Audigier C, Mansi T, Delingette H, et al. Efficient lattice boltzmann solver for patient-specific radiofrequency ablation of hepatic tumors. IEEE Trans Med Imaging.
2015;34:1576-1589.

53. Rostami-Hodjegan A, Tucker GT. Simulation and prediction of in vivo drug metabolism in human populations from in vitro data. Nat Rev Drug Discov. 2007;
6:140-148.

54 Liao R, Miao S, de Tournemire P, et al. An artificial agent for robust image registration. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,
2017;4168-4175.

55. Patel TM, Shah SC, Pancholy SB. Long distance tele-robotic-assisted percutaneous coronary intervention: a report of first-in-human experience. EClini-
calMedicine. 2019;14:53-58.

56. Zindel C, Herrmann K. A conversation between Christoph Zindel and Ken Herrmann. J Nucl Med. 2020;61:1088-1090.

57. Kaissis GA, Makowski MR, Rückert D, et al. Secure, privacy-preserving and federated machine learning in medical imaging. Nat Mach Intell. 2020;2:305-311.

58. Pearl J. The seven tools of causal inference, with reflections on machine learning. Commun ACM. 2019;62:54-60.

59. Jercich K. “FDA Highlights the Need To Address Bias in AI.” Healthcare IT News, October 22, 2020. www.healthcareitnews.com/news/fda-highlights-need-
address-bias-ai.

60. Rampton V, Mittelman M, Goldhahn J. Implications of artificial intelligence for medical education. Lancet Digit Health. 2020;2:e111-e112.

61. Terry MB, Liao Y, Whittemore AS, et al. 10-year performance of four models of breast cancer risk: a validation study. Lancet Oncol. 2019;20:504-517.

62. Telli ML, Gradishar WJ, Ward JH. NCCN guidelines updates: breast cancer. J Natl Compr Canc Netw. 2019;17:552-555.

63 Kalinsky K, Barlow WE, Meric-Bernstam F, et al. First results from a phase III randomized clinical trial of standard adjuvant endocrine therapy (ET)+/�
chemotherapy (CT) in patients (pts) with 1- 3 positive nodes, hormone receptor-positive (HR+) and HER2-negative (HER2-) breast cancer (BC) with recurrence
score (RS), 25: SWOG S1007 (RxPonder). Paper presented at: San Antonio Breast Cancer Symposium. San Antonio, TX; 2020. Abstract GS3-00.

64. Anandan A, Sharifi M, O’Regan R. Molecular assays to determine optimal duration of adjuvant endocrine therapy in breast cancer. Curr Treat Options Oncol.
2020;21:84.

65. Pusztai L, Foldi J, Dhawan A, et al. Changing frameworks in treatment sequencing of triple-negative and HER2-positive, early-stage breast cancers. Lancet Oncol.
2019;20:e390-e396.

66. Chang JM, Leung JWT, Moy L, et al. Axillary nodal evaluation in breast cancer: state of the art. Radiology. 2020;295:500-515.

67. Meattini I, Marrazzo L, Saieva C, et al. Accelerated partial-breast irradiation compared with whole-breast irradiation for early breast cancer: long-term results of the
randomized phase III APBI-IMRT-Florence trial. J Clin Oncol. 2020;38:4175-4183.

68. Sung H, Ferlay J, Siegel RL, Laversanne M, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence andmortality worldwide for 36 cancers in 185
countries. CA Cancer J Clin. Epub 2021 Feb 4.

69. Yala A, Mikhael PG, Strand F, et al. Toward robust mammography-based models for breast cancer risk. Sci Transl Med. 2021;13:eaba4373.

70. Park JH, Jonas SF, Bataillon G, et al. Prognostic value of tumor-infiltrating lymphocytes in patients with early-stage triple-negative breast cancers (TNBC) who did
not receive adjuvant chemotherapy. Ann Oncol. 2019;30:1941-1949.
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