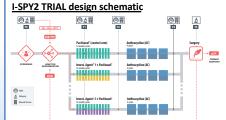


BluePrint Luminal subtype predicts non-response to HER2targeted therapies in HR+/HER2+ I-SPY2 breast cancer patients

Pei Rong Evelyn Lee¹, Zelos Zhu¹, Denise Wolf¹, Christina Yau¹, William Audeh², Annuska Glas², Lamorna Brown-Swigart¹, Gillian Hirst¹, Angela DeMichele³, I-SPY2 TRIAL Investigators, Laura Esserman¹ and Laura van 't Veer¹

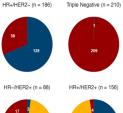

¹University of California San Francisco, CA; ²Agendia Inc., CA; ³University of Pennsylvania, PA

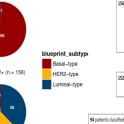
Introduction

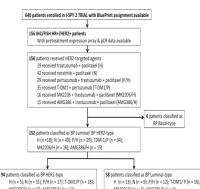
- BluePrint molecular profile determines the mRNA levels of 80 genes that discriminate between 3 breast cancer subtypes based on functional molecular pathways: Luminal, HER2 and Basal.
- Previous studies suggest that within the HR+/HER2+ breast cancer subtype, patients classified as BluePrint (BP) Luminal subtype are more responsive to pertuzumab and trastuzumab (P/H) as opposed to trastuzumab (H) alone.
- In the I-SPY2 TRIAL (NCT01042379), HER2-targeted treatment arms include H, P/H, neratinib (N), T-DM1/pertuzumab (P), MK2206/ H and AMG386/H; and patients were classified by BP molecular subtyping in addition to conventional receptors.

Can BluePrint subtype predict response to HER2-targeted agents in I-SPY2 HR+/HER2+ breast cancer patients? What are the pathway differences between the BP subtypes?

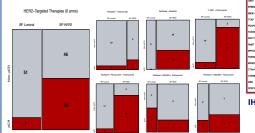
Study Cohort




- Phase II adaptively-randomized neoadjuvant trial
- Primary endpoint: pathologic complete response (pCR)
- Match therapies with most responsive breast cancer subtypes


Timeline of I-SPY2 Investigational Agents

Distribution of BluePrint molecular subtypes within conventional IHC/ FISH receptor groups (n = 640):

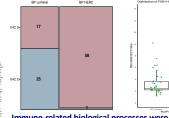


Methods

- . We used Fisher's exact test to assess association between BP subtypes and pCR
- To identify genes associated with BP Luminal vs. BP HER2 subtype, we applied a Wilcoxon rank sum test and fitted a logistic model, with the Benjamini-Hochberg (BH) multiple testing correction (BH p<0.05). We then performed pathway enrichment analysis using DAVID (ver. 6.8).
- · Our study is exploratory and does not adjust for multiplicities of other biomarkers in the trial outside this study

Results

IHC/FISH HR+/HER2+ BluePrint Luminal subtype is associated with lower responses to HER2-targeted agents, with the exception of MK2206/H



Semi-supervised heat map showing the expression of BluePrint

Top 15 up-regulated/ down-regulated genes in BP HER2-type tumors (relative to BP Luminal) in IHC/FISH HR+/HER2+ patients:

	Fold Change	p-value	Adjusted p value	Gone symbol	Gene Name	Fold Change	p-value	Adjusted p rai
tur Receptor Bound Protein 7	2.50	4.213946-21	1298116-17	RERG	Ras Like Estogen Regulated Grawth Inhibitor	-1.69	1,009166-13	2.482536-13
eptor Tyrosine Kinase 2	1.50	1.100715-19	9.512948-16	190100	19C1 Domain Family Member 9	-1.21	3.558835-13	8.418335-10
nd Invasion Enhancer 1	2.64	1.534215-17	8.80006-14	AL133644	Photoin phosphotese 1.J	-1.28	1.235945-11	1.854815-08
	1.65	2.219376-16	9.590088-13	MAPT	Microbibule Associated Proble Tau	-1.68	1.736265-11	2.200870-08
Sachment to Proteins 3	187	3,673985-16	1,294198-12	PPNIU	Protein Phosphatose, Ilig2+Mr2>- dependent 1J	4.96	1,691996-11	2,29987E-08
ed Lipid Transfer Domain Containing 3	1.99	\$274840-15	2.801005-11	E581	Extragen Receptor 1	-1.08	3.721656-11	4.577935-08
5	1.60	8.124866-13	1,554516-09	0000748	Called-Call Disnair Containing 748	-1.56	5.309605-11	6.107235-08
nciomine N-Methyltransferase	3.27	1,615335-12	2,791578-09	25WIRS	Zinc Finger SWIIII-Type Containing S	-074	6,275646-11	6.755236-08
hosphoprotein 6	LS4	9.60829C-11	9.793006-08	0690002	Dysbindin Donain Containing 2	-1.01	1,419985-18	1.358445-07
ior Superlamity Member 21	1,71	2.137165-10	1.841025-07	AGBL2	ATP1 GTP Binding Protein Like 2	0.49	2,345145-10	1.841825-07
totar Superfamily Comain Containing 24.	1.57	4.450780-10	3,33387 E-07	PARSEE	Par-6 Family Cell Polantly Regulator Beta	-1.32	2.19095-13	1,841836-07
ne 15 Open Reading Frame 20	8.50	5.50/580-10	3.8889E-07	KIAATSNIL	KOWATSIN CHII	-0.79	2.638955-18	1,987315-07
ng Drowth Factor Beta Receptor 1	1.49	1.529895-09	9321006-07	103L2	Nacolonedonin Like 2	-0.69	8.217935-10	5,729115-07
3-Monocoppenses	1.62	2.057095-09	179036-01	SLCIDAS	Solute Carrier Family 38 Hember 6	-1.37	1.401535-09	9.282485-07
18	1.67	4277075-09	2.299578-08	SPR	Seplapterin Reductase	4)74	2.673996-09	1.98001E-06

IHC/FISH HR+/HER2+ BluePrint Luminal is associated with lower FISH HER2/CEP17 ratios:

genes in 152 IHC/FISH HR+/HER2+ patients

Immune-related biological processes were significantly enriched based on DAVID functional enrichment analysis
• HR+/HER2+ BP HER2-type patients demonstrated higher

expres	sion levels of immune-relate	a gene	s e.g.	CILA4, I	IGB2	
Category	Term	Count	%	p-value	Benjamini	
GOTERM_BP_DIRECT	negative regulation of T cell proliferation	15	1	3.60E-07	1.50E-03	
GOTERM_BP_DIRECT	inflammatory response	56	3.6	7.30E-06	1.50E-02	
KEGG_PATHWAY	Cytokine-cytokine receptor interaction	37	2.4	9.60E-05	2.70E-02	
GOTERM_MF_DIRECT	protein binding	748	47.7	4.30E-04	4.30E-01	
GOTERM_BP_DIRECT	positive regulation of inflammatory response	16	1	4.80E-04	4.90E-01	
GOTERM_BP_DIRECT	neutrophil chemotaxis	15	1	5.30E-04	4.20E-01	
GOTERM_BP_DIRECT	adaptive immune response	25	1.6	5.40E-04	3.70E-01	
GOTERM_BP_DIRECT	positive regulation of gene expression regulation of G1/S transition of mitotic cell	37	2.4	7.50E-04	4.10E-01	
GOTERM_BP_DIRECT	cycle	7	0.4	9.50E-04	4.30E-01	
GOTERM_BP_DIRECT	response to lipopolysaccharide	26	1.7	1.10E-03	4.30E-01	
GOTERM_BP_DIRECT	response to wounding negative regulation of interferon-gamma	14	0.9	1.10E-03	3.90€-01	
GOTERM_BP_DIRECT	production	9	0.6	1.10E-03	3.60E-01	
GOTERM_BP_DIRECT	xenobiotic catabolic process	5	0.3	1.10E-03	3.40E-01	
GOTERM_BP_DIRECT	apoptotic signaling pathway	15	1	1.10E-03	3.20E-01	
GOTERM_MF_DIRECT	chemokine activity	12	0.8	1.20E-03	5.40E-01	
GOTERM RP DIRECT	chemotavis	21	4.9	1.205.02	9 505 04	

Conclusion

- Our analysis suggests that IHC/FISH HR+/HER2+ BP Luminal subtype is associated with lower response rates to HER2targeted agents, including Pertuzumab/ Trastuzumab, and may need an alternative strategy.
- IHC/FISH HR+/HER2+ BP HER2 subtype appears associated with higher expression of immune-related genes, relative to BP Luminal; and suggests that immune signaling may contribute to HER2-targeted therapy sensitivity.