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SUMMARY
Using pre-treatment gene expression, protein/phosphoprotein, and clinical data from the I-SPY2 neoadju-
vant platform trial (NCT01042379), we create alternative breast cancer subtypes incorporating tumor biology
beyond clinical hormone receptor (HR) and human epidermal growth factor receptor-2 (HER2) status to better
predict drug responses. We assess the predictive performance of mechanism-of-action biomarkers from
�990 patients treated with 10 regimens targeting diverse biology. We explore >11 subtyping schemas and
identify treatment-subtype pairs maximizing the pathologic complete response (pCR) rate over the popula-
tion. The best performing schemas incorporate Immune, DNA repair, and HER2/Luminal phenotypes. Subse-
quent treatment allocation increases the overall pCR rate to 63% from 51% using HR/HER2-based treatment
selection. pCR gains from reclassification and improved patient selection are highest in HR+ subsets (>15%).
As new treatments are introduced, the subtyping schema determines theminimum response needed to show
efficacy. This data platform provides an unprecedented resource and supports the usage of response-based
subtypes to guide future treatment prioritization.
INTRODUCTION

Although breast cancer treatment has improved over the past

several decades, over 40,000 women die annually in the

United States alone; and worldwide, on average, one in three

patients will die of their disease (DeSantis et al., 2015). Pa-

tients who achieve pathologic complete response (pCR) after
Cancer Cell 40, 609–623,
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neoadjuvant therapy, defined by the absence of invasive dis-

ease in breast and lymph nodes, have excellent long-term out-

comes (Spring et al., 2020; Yee et al., 2020). By improving pCR

rates in the early disease setting, we can reduce the risk of

subsequent metastatic disease and death from breast cancer.

The I-SPY2 trial is an ongoing multicenter, Phase II neoadju-

vant platform trial for high-risk, early-stage breast cancer
June 13, 2022 ª 2022 The Authors. Published by Elsevier Inc. 609
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designed to rapidly identify new treatments and treatment

combinations with increased efficacy compared to standard-

of-care (sequential weekly paclitaxel followed by doxoru-

bicin/cyclophosphamide [T-AC] chemotherapy). In I-SPY2,

multiple investigational treatment regimens are simultaneously

and adaptively randomized against the shared control arm

(Chien et al., 2019; Nanda et al., 2020; Park et al., 2016;

Rugo et al., 2016). The primary efficacy endpoint is pCR

(Yee et al., 2020).

The goal of the trial is to assess the activity of novel drugs, typi-

cally combined with weekly paclitaxel, in a priori defined

biomarker subsets based on hormone receptor (HR), human

epidermal growth factor receptor-2 (HER2) expression, and

MammaPrint (MP) status. Among HR+HER2patients, only MP

high cases were eligible for the trial. For all of the patients, tumor

biology was further subdivided into high (MP1) or ultra-high

(MP2) risk status (Chien et al., 2019; Nanda et al., 2020; Park

et al., 2016; Rugo et al., 2016). An experimental arm ‘‘graduates’’

when it reaches R85% predictive probability of demonstrating

superiority to control in a future 1:1 randomized 300-patient

Phase III neoadjuvant trial in the most responsive subsets (Chien

et al., 2019; Clark et al., 2021; Nanda et al., 2020; Park et al.,

2016; Rugo et al., 2016).

The value of a tumor subtyping schema is its utility in strati-

fying patients for efficacious treatment. It is well established

that HR/HER2 subtyping is well suited for predicting responses

to endocrine and HER2-targeted agents (Waks and Winer,

2019). However, the landscape of targeted breast cancer

therapeutics is expanding. Breast cancer treatment now in-

cludes platinum-based agents, poly (ADP-ribose) polymerase

(PARP) inhibitors, phosphatidylinositol 3-kinase catalytic sub-

unit alpha (PIK3CA) inhibitors, mammalian target of rapamycin

(mTOR) inhibitors, dual HER2-targeting regimens, and immuno-

therapy for specific HR/HER2-defined subtypes (Bergin and

Loi, 2019; McAndrew and Finn, 2020; Wuerstlein and Harbeck,

2017). The aggregate mechanisms of action of the compen-

dium of currently clinically available targeted therapeutics for

breast cancer extends well beyond the biology that HR and

HER2 expression captures. Therefore, we hypothesized that

molecular subtyping categories incorporating biology beyond

HR/HER2 could be created and that these categories will better

inform novel agent selection for individual patients and maxi-

mize efficacy (i.e., pCR rate) over the entire treatment

population.

The I-SPY2 trial and associated datasets present an opportu-

nity to develop improved subtype classifications because of

its comprehensive multi-omic molecular characterization of all

tumors and the diverse array of drugs targeting different

molecular pathways. As of September 2021, 1,979 patients

were randomized to I-SPY2, and 20 investigational agents

were tested in the trial, 16 of which have completed evaluation.

Experimental treatments include pan-HER2 inhibitors and anti-

HER2 agents, PARP inhibitor/DNA damaging agent combina-

tions, an AKT inhibitor, immunotherapy, and angiopoietin

1/2 (ANG1/2), insulin growth factor 1 receptor (IGF1R), and

heat shock protein 90 (HSP90) inhibitors added to standard of

care chemotherapy. This paper includes analyses across 10

arms of I-SPY2, the first 9 experimental arms that completed

evaluation and the control arm.
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Within the I-SPY2 biomarker program, there are two primary

biomarker platforms assayed at the pre-treatment time point:

gene expression arrays and reverse phase protein arrays

(RPPA). In the case of RPPA, upfront enrichment and purifica-

tion of tumor epithelium, stromal, and intratumoral immune cell

compartments via laser capture microdissection (LCM) is per-

formed before separately assaying each population. Bio-

markers are classified as standard, qualifying, or exploratory.

Standard biomarkers are routinely used, US Food and Drug

Administration cleared or approved, or have investigational de-

vice exemption (IDE) status (i.e., HR, HER2, MP, MRI functional

tumor volume) and used for clinical decision making. Qualifying

biomarkers are pre-specified for analysis based on existing ev-

idence suggesting a role in treatment response prediction, and

are tested in a Clinical Laboratory Improvement Amendments

of 1988 (CLIA) setting; they may vary from drug to drug and

are tested prospectively for their specific response-predictive

value using a pre-specified statistical framework (Wolf et al.,

2017, 2020a; Wulfkuhle et al., 2018). Exploratory biomarkers

are hypothesis generating and include discovery efforts using

clinical data to identify predictive biomarkers (Sayaman

et al., 2020).

In this paper, we summarize and further explore qualifying

biomarker results across 10 arms of I-SPY2, combining informa-

tion from standard and qualifying biomarkers to create biological

treatment response-predicting subtypes (RPSs) that represent

better matches for our tested drugs than the standard HR/HER2-

based subtypes (i.e., maximize pCR rate for a given drug, or class

of agent, in a given subtype). We propose a RPS classification

schema that will be prospectively used in the next phase of the

I-SPY platform (I-SPY2.2). This manuscript is accompanied by

the public release of the I-SPY2-990mRNA/RPPADataResource,

which includes gene expression and protein/phosphoprotein data

for �990 breast cancer patients, along with clinical annotation

including treatment arm and response.

RESULTS

The I-SPY2-990 mRNA/RPPA Data Resource: patients
and data
A total of 987 patients from 10 arms of I-SPY2 (210 control [Ctr];

71 veliparib/carboplatin [VC]; 114 neratinib [N]; 93 MK2206; 106

ganitumab; 94 ganetespib; 134 trebananib; 52 TDM1/pertuzu-

mab [P]; 44 pertuzumab; and 69 pembrolizumab [Pembro])

were included in this analysis (Figures 1A and 1B). There were

38% HR+HER2� tumors , 37% HR�HER2� (triple negative

[TN]), and 25% HER2+ (9% HR� and 16% HR+). Overall, 49%

were classified MP2 class, and 51% were classified MP1 class.

Six of these arms graduated within one ormore receptor subtype

(purple bars) and three reached maximum accrual without

graduation.

Estimated pCR rates by HR/HER2 receptor subtype for the 10

arms of the trial considered herein were previously reported and

are summarized in Figure 1C (Chien et al., 2019; Clark et al.,

2021; Nanda et al., 2020; Park et al., 2016; Pusztai et al., 2021;

Rugo et al., 2016). Even in the highest-efficacy treatment arms,

70% of HR+HER2�, 40% of TN, 54% of HR+HER2+, and 26%

of HR�HER2+ patients did not achieve pCR, further motivating

the need for better biomarkers and subtyping schemas.
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Figure 1. Trial design and data

(A) I-SPY2 trial schematic.

(B) Timeline of I-SPY2 investigational regimens.

(C) Estimated pCR rate across arms by receptor subtype (blue arrows = graduated; gray arrows = graduated in all HER2+.

(D) I-SPY2-990 mRNA/RPPA Data Resource consort.
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The I-SPY2-990 Data Resource contains gene expression,

protein/phosphoprotein, and clinical data for the patients

included in this analysis (Figure 1D). All of the patients have

pre-treatment full transcriptome expression data on over

�19,000 genes assayed on Agilent 44K. A total of 736 patients

(all arms except ganitumab and ganetespib) have normalized

LCM-RPPA data for 139 key signaling proteins/phosphoproteins

in cancer (see STAR Methods). The clinical data includes HR,

HER2, and MP status, response (pCR or no pCR), and treatment

arm. The I-SPY2-990 Data Resource is publicly available in

the NCBI Gene Expression Omnibus (GEO) (Super-Series

GSE196096, composed of Sub-Series GSE194040 [mRNA]

and GSE196093 [RPPA]) and through the I-SPY2 Google Cloud

repository (http://www.ispytrials.org/results/data).

Predictive I-SPY2 ‘‘qualifying’’ biomarkers across 10
arms of I-SPY2
Twenty-seven mechanism-of-action based gene expression

signatures and proteins/phosphoproteins constituting our suc-

cessful qualifying biomarkers reflect DNA repair deficiency
(DRD; n = 2), Immune activation (n = 8), estrogen receptor (ER)

signaling (n = 2), HER2 signaling (n = 4), proliferation (n = 3),

(phospho)activation of AKT and mTOR (n = 3), and angiopoe-

tin/Tie-2 (n = 1) pathways, among others (Table S1). Each pre-

specified qualifying biomarker was originally found to predict

response in a specific arm in one or more standard receptor sub-

types, as previously reported (Lee et al., 2018; Wolf et al., 2017,

2018, 2020a, 2020b; Wulfkuhle et al., 2018; Yau et al., 2019).

Table S1 also describes a newly developed VC-response

biomarker for the TN subset (VCpred_TN) reflecting both DNA

repair deficiency and Immune activation that was validated in

BrighTNess (Loibl et al., 2018) and achieved qualifying status.

In this analysis, we assessed whether they also predict response

to different drugs included in other arms, with the goal of gaining

biologic insight into which patients responded to what treatment

and by what mechanism.

Figure 2 shows the unsupervised clustered heatmap of

qualifying biomarker expression levels (Table S2). Biomarkers

correlate by biologic pathway (Figure 2, side dendrogram).

Although patient profiles largely cluster by receptor subtype
Cancer Cell 40, 609–623, June 13, 2022 611
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Figure 2. Clustered heatmap of mechanism-of-action ‘‘qualifying’’ biomarkers across 10 arms
Unsupervised clustering of mechanism-of-action biomarkers (rows) and 987 patient samples (columns), with biomarkers annotated by platform and pathway;

and samples annotated by HR/HER2, MP1/2 class, response, receptor subtype, PAM50, TN subtypes (7- and 4-classes), and arm.

See also Tables S1 and S2.
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(Figure 2), there is mixing between groups, highlighting the fact

that for these patients, biological pathways other than HR/HER2

signaling are a stronger common denominator. Moreover, HR/

HER2 subclusters appear to be characterized by Immune-high

(Figure 2; C4, C6, C7, top dendrogram) and Immune-low

(Figure 2; C1–3 and C5) signaling, although Immune-high

proportions differ by subtype (TN: 58%; HER2+: 41%; and

HR+HER2�: 19%). Variability in ER/progesterone receptor

(PGR), proliferation, and extracellular matrix (ECM) signatures is

visible as well.

We used logistic regression to test the association of these 27

biomarkers with pCR in all 10 arms individually, in the population

as a whole (adjusting for HR, HER2, and treatment arm), and

within receptor subtypes (Figure 3; Table S3). None of the 27

mechanism-of-action based biomarkers were associated with

response exclusively in the arm where they were first proposed,

indicating broader predictive function than anticipated.

The biomarkers with the broadest predictive function across

drug classes were from Immune, proliferation, and ER/Luminal

pathways (Figures 3 and S1A). One or more immune signatures

predicted response in 9 of the 10 arms in the overall population

(Figure 3; rows 1–11, leftmost biomarker group Immune).

However, different Immune biomarkers were the most predictive
612 Cancer Cell 40, 609–623, June 13, 2022
depending on receptor subtype and drug/drug class. For

example, in the HER2+ subset, the B cell gene signature predicts

response toMK2206, N, and control chemotherapy, but was less

predictive in the other arms (Figures 3, rows 30–42, andS1B). In

the TN subtype, the most predictive Immune biomarkers are

dendritic cells and STAT1_sig/chemokine12 gene signatures

for Pembro and the ANG1/2 inhibitor trebananib, which affects

macrophages and angiogenesis (Figure 3, rows 21–29). All of

the Immune biomarkers were higher in pCR than in non-pCR

cases. The exception to the rule was the mast cell signature,

which was higher in cases with residual disease (RD) in the

HR+HER2� subtype, mainly due to its negative association

with pCR in the Pembro arm.

Proliferation biomarkers (i.e., adjusted MP index and basal

index [continuous scores], and module11 proliferation score)

were also broadly predictive of higher pCR overall (in 7 of 10

arms; Figure 3, rows 1–11, second biomarker group from left–

‘‘proliferation’’) and also in HR+HER2� (5/8 arms) and

HR+HER2+ (3/6 arms) subtypes (Figure 3, rows 12–20 and 30–

36), but generally not in TN or HR�HER2+ cancers (Figure 3,

rows 21–29 and 37–42).

Luminal/ER biomarkers (i.e., BluePrint [BP]_Luminal index, ER

signature) predicted resistance to multiple therapies in the



Figure 3. pCR association analysis of continuous mechanism-of-action biomarkers across 10 arms

Dot plot showing the level and direction of association between each signature (column) and pCR as labeled (rows): All patients (rows 1–11), HR+HER2� (rows 12–

20), TN (rows 21–29), HR+HER2+ (rows 30–36), and HR�HER2+ (rows 37–42). Row labels denote treatment arm. Red/blue dot indicates higher/lower levels asso-

ciate with pCR; darker intensity reflects larger effect size; size of dot reflects strength of association (1/p); white background indicates LR p < 0.05; X denotes

missing data.

See also Table S3 and Figure S1.
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HR+HER2� subtype (5/8 arms: Pembro, Ctr, N, trebananib,

and VC; Figure 3, rows 12–20, rightmost biomarker group-

‘‘ER/Luminal’’). In HR+HER2+ and HER2+ subtypes, they also

associate with non-response in the HER2-only-targeted arms

(Ctr [trastuzumab + paclitaxel], N, paclitaxel + trastuzumab + P

[THP], and ado-trastuzumab emtansine [TDM1]/P), but not in
armswith agents that targetedother pathways (MK2206or treba-

nanib) added to trastuzumab (Figures 3, rows 30–36 and S1B).

We also confirmed that HER2 biomarkers (i.e., HER2-epidermal

growth factor receptor [EGFR] co-activation, HER2index, and

Mod7_ERBB2 gene signatures) were predictive of pCR in multi-

ple HER2-targeted arms (Figure 3, fourth biomarker group from
Cancer Cell 40, 609–623, June 13, 2022 613
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Figure 4. Clinically motivated response-based biomarker subsets

(A) Overall prevalence and pCR rates in Pembro by immune subtype in TN.

(B) Overall prevalence and pCR rates in VC by DRD subtype in TN. p values shown are from Fisher’s exact test.

(C) Sankey plot showing Immune/DRD subsets in TN, with bar plots of pCR rates in VC, Pembro, and control.

(D) Sankey plot showing Immune/DRD subsets in HR+HER2�.
(E) Sankey plot of HER2+/BP-Luminal and HER2+/BP-HER2_or_Basal in HER2+, with bar plots of pCR rates in Ctr, TDM1/P, and MK2206 arms.

(F) Sankey plot showing the collapse of Immune/DRD subtypes in HER2� from 8 to 3 classes. The # denotes patient subset too small to be evaluable (<5).

See also Figure S2.
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the left-‘‘HER2ness’’). In theHR�HER2+ subtype, the ER/Luminal

and Her2ness biomarkers did not generally predict response,

other than HER2ness in TDM1/P (Figure 3, rows 37–42).

In different HR/HER2 subsets, we also observed that the most

specific biomarker (e.g., pMTOR for MK2206) may not be the

most predictive (e.g., immune signals in the HER2+ subset in

MK2206), and that phosphoproteins (e.g., pTIE2, pMTOR,

pEGFR) may have greater predictive specificity than expres-

sion-based biomarkers (Figure 3). Moreover, it appeared that

different biology may predict response to the same drugs in

different receptor subtypes (e.g., trebananib: Immune high in

TN versus pTIE2 in HER2+ (Figure 3; Wolf et al., 2018); and

MK2206: lower pMTOR in TN versus higher pmTOR in HER2+

(Figure 3; Wolf et al., 2020a)). The number of significant bio-

markers observed also differs by arm. Response to VC had the

most significantly associated signatures and MK2206 the least

(43% and 7% of biomarker-subtype pairs, respectively; Fig-

ure S1C). To assess whether this difference in the number of pre-

dictive biomarkers observed between agents is specific to the
614 Cancer Cell 40, 609–623, June 13, 2022
qualifying biomarker set selected, we performed whole-genome

(n = R19,000 genes) analysis and observed similar results

(Figure S1D).

A framework for identifying a response-predictive
subtyping schema for prioritizing therapies
It is clear from our qualifying biomarker evaluation that within

each HR/HER2 subtype, there is additional biology that further

predicts the response to I-SPY2 agents (Figure 3). Candidate

biological phenotypes that may add value to HR/HER2 include

proliferation, DRD, Immune, Luminal, Basal, and HER2ness (Fig-

ure S2A). Of the R11 response-predictive subtyping schemas

that we explored (Figure S2B), our preferred schema incorpo-

rates biology that discriminates response to the treatments likely

to be available in the clinic, such as platinum/PARP inhibition

and/or immunotherapy for HER2� patients, and dual-HER2 inhi-

bition for HER2+ patients.

Our stepwise approach to developing this schema was as fol-

lows: since platinum-based and immunotherapy, separately and
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together, are becoming the standard of care for TN breast can-

cer, we examined the overlap between DRD/platinum-response

and Immune biomarkers as the putative drug class-specific pre-

dictors and calculated response rates to VC and Pembro in TN

patients positive for one, both, or neither biomarker

(Figures 4A–4C; see STAR Methods for biomarker implementa-

tion strategy). In TN, 67% were classified as DRD+, and 63%

as Immune+ (Figures 4A and 4B). We note that althoughmost pa-

tients classified Immune enriched by Brown and Burstein (Bur-

stein et al., 2015) and Lehmann and colleagues (Chen et al.,

2012; Lehmann et al., 2011) schemas are also Immune+ in our

implementation, many patients outside these (small) classes

are predicted Immune responsive (Immune+) as well

(Figures S2C and S2D). Immune+ TN patients had a high pCR

rate to Pembro (89%; Figure 4A) and the DRD+ TN patients

had a high pCR rate to VC (75%; Figure 4B). There was consider-

able overlap between Immune and DRD biomarker status in this

subset of patients: 56% of TN are high for both biomarkers, 7%

are Immune+/DRD�, 11% Immune�/DRD+, and 26% are

Immune�/DRD� (Figure 4C). The Immune+/DRD+ class had a

very high pCR rate with either VC or Pembro (pCR rates: VC:

74%, Pembro: 92%, control chemotherapy: 21%; Figure 4C,

bottom right). In contrast, the Immune+/DRD� class had the

highest pCR rate to Pembro (Pembro: 80%; Figure 4C, third

down at right), whereas the Immune�/DRD+ class had the high-

est pCR to VC (VC: 80%, Pembro: 33%, control 38%; Figure 4C,

second down at right). For the 26% of Immune�/DRD� TN

patients, response rates were very low in all of these arms

(<21%; Figure 4C, top right).

Given that Pembro graduated in I-SPY2 for efficacy in

HR+HER2� and that a DRD+ subset was found to be responsive

to VC (Wolf et al., 2017), we applied the same strategy for

HR+HER2�cancers as for TN and examined the overlap between

DRD and Immune status. Nineteen percent of HR+HER2� are

positive for both biomarkers, 20% are Immune+/DRD�, 10%
Immune�/DRD+, and 51% are Immune�/DRD� (Figure 4D).

While these proportions differ from those observed in TN, the

pCR rates pattern is similar (Figures S2E and S2F). We note

here that our example implementation of these response-predic-

tive phenotypes is subtype specific (e.g., dendritic-cell and

STAT1/chemokine signatures define Immune+ in TN whereas B

cell and Mast cell signatures define Immune+ in HR+HER2�;
see STAR Methods).

In HER2+ cancers, motivated by the observation that the high

expression of the BP-Luminal index or an ER-related gene signa-

ture associated with the lack of pCR in the HER2-only-targeted

arms (i.e., Ctr [trastuzumab], N, THP, and TDM1/P), but not

in arms targeting an additional pathway (i.e., MK2206 or

trebananib) (Figure 3), we defined a HER2+/Luminal phenotype

and used the BP subtypes to reclassify HER2+ patients by

Luminal signaling (Figure 4E). The HR+HER2+, triple positive,

patients were assigned almost evenly into HER2+/BP-Luminal

andHER2+/BP-HER2 or BP-Basal (BP-HER2_or_Basal) classes,

whereas nearly all HR�HER2+ cancers were HER2+/BP-HER2_

or_Basal, and hardly any BP-Luminal. For HER2+/BP-HER2_or_

Basal patients, the pCR rate in the pertuzumab arm is 78%,

versus 48% in the MK2206 arm, and 39% in control. In the

HER2+/BP-Luminal class, 60% of patients achieved pCR in the

MK2206 arm versus 8% in the P and control arms, although
very few patients received MK2206 and this finding requires

further validation.

Synthesis into a minimal set of response predictive
subtypes: the RPS-5
Here, we combined the predictive biology described above to

include all of the patients in one classification schema. If we

added Immune, DRD, and BP-Luminal/HER2_or_Basal bio-

markers to standard TN (Figure 4C), HR+/HER2� (Figure 4D),

and HER2+ (Figure 4E) status per the above, a 10-subtype

schema would result. With 10 subtypes, some would include

only a handful of patients and it would be difficult to statistically

evaluate in a trial setting. Given this practical consideration, we

combined all Immune+ patients in HR+HER2� and TN subsets

into a single subtype HER2�/Immune+ (Figure 4F, right bottom),

as both subsets share Pembro as the same best (highest pCR)

agent (see Figures 4C, S2E, and S2F). We also combined TN/

Immune�/DRD+ and HR+HER2�/Immune�/DRD+ patients into

the subtype HER2�/Immune�/DRD+ (Figure 4F, right center),

as these subsets share VC as the highest pCR arm (see

Figures 4C, S2E, and S2F). With this schema, we created the 5

subtypes that define the RPS-5 response-predictive subtyping

schema (combined Figures 4F and 4E, respectively): HER2�/
Immune�/DRD�, HER2�/Immune�/DRD+, HER2�/Immune+,

HER2+/BP-HER2_or_Basal, and HER2+/BP-Luminal.

The Sankey diagram in Figure 5A shows the relationship be-

tween standard receptor subtypes and the RPS-5 subtyping

schema in the I-SPY2 data. Receptor subtypes and their preva-

lence are shown on the left (starting with 38% HR+HER2�, 37%
TN, 16%HR+HER2+, and 9%HR�HER2+) and the plot illustrates

how receptor subtypes ‘‘flow’’ into the RPS-5 subtypes on

the right (stratifying into 29% HER2�/Immune�/DRD�, 38%

HER2�/Immune+, 8% HER2�/Immune�/DRD+, 19% HER2+/

BP-HER2_or_Basal, and 6% HER2+/BP-Luminal). pCR rates

by drug arm within each subtype are shown in the bar plots to

the left for the standard receptor subtypes and to the right for

the RPS-5 subtypes.

Using the standard HR/HER2 receptor subtype to classify pa-

tients reveals that armswith the highest pCR rates include Pem-

bro for HR+HER2� and TN cancers with 30% and 66% pCR

rates, respectively; pertuzumab for HR�HER2+ cancers with

80% pCR and TDM1/P for the HR+HER2+ subtype with 51%

pCR. Using the RPS-5, the best drugs were Pembro for

HER2�/Immune+ with 79% pCR; VC for the HER2�/
Immune�DRD+ cancers with 60% pCR; and MK2206 for

HER2�/Immune�/DRD� cancers with 20% pCR though all of

the arms performed similarly with low pCR in this subtype. In

the HER2+ cancers, the best drug was pertuzumab for HER2+/

BP-HER2_or_Basal cancers with 78% pCR; and MK2206 for

HER2+/BP-Luminal cancers with 60% pCR, although the

numbers are small.

Impact of classification schema on trial population-level
pCR rates and maximization of patient benefit
A major goal of a response-predictive subtype schema is to in-

crease the pCR rate in the population and to maximize the prob-

ability of pCR for an individual patient. To examine the impact of

the RPS-5 schema, we performed an in silico experiment to

calculate how the overall pCR rate would compare if treatments
Cancer Cell 40, 609–623, June 13, 2022 615
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Figure 5. Integrated treatment response-predictive subtyping 5 (RPS-5) schema combining Immune, DRD, HER2, and BP_subtype phe-
notypes

(A) Sankey plot between receptor subtype and RPS-5 subtypes, with pCR rate bar plots for each subtype (highest pCR rate labeled in blue). These pCR rates may

differ from the reported estimated pCR in Figure 1C from Bayesian efficacy analyses.

(B) In silico experiment comparing pCR rates in I-SPY2’s control arm (black bar) and experimental arms (orange bar); estimated pCR rates if treatments had been

‘‘optimally’’ assigned using receptor subtype (red bar) or RPS-5 subtyping (blue bar).

(C) Hazard ratio (HR) for distant recurrence-free survival (DRFS) for pCR versus non-pCR by RPS-5 subtype (box size = power; whiskers = 95% confidence in-

terval [CI]). The # denotes subsets with <5 patients; * denotes arm not open in subtype. p values are from Fisher’s exact test.

See also Figure S3.
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in the multi-arm adaptive randomization I-SPY2 trial (Figure 1A)

had been assigned according to the RPS-5. The observed over-

all pCR rate in the standard of care control arm of I-SPY2 was

19% (black bar, Figure 5B, under ‘‘Overall’’). In the 9 experi-

mental arms of the trial taken together, the actual observed over-

all pCR rate was 35%, a 16% increase over the control arm

(orange bar, Figure 5B). Had patients been assigned to the

best experimental treatment arm (that became apparent only in

hindsight) based on standard receptor subtypes, the estimated

overall pCR rate in the experimental arms together would have

been 51%, a further 16% increase (red bar, Figure 5B). Finally,

if we had assigned patients using the RPS-5 to their correspond-
616 Cancer Cell 40, 609–623, June 13, 2022
ing best treatment, the overall pCR rate in the combined exper-

imental arms would be 58%, a further 7% improvement (blue

bar, Figure 5B). Achieving a pCR results in excellent survival out-

comes in all of the RPS-5 subtypes (Figure S3A). However,

similar to differences observed among HR/HER2 subtypes

(Spring et al., 2020; Yee et al., 2020), the relative survival

benefit varies from RPS-5 subtype to subtype as well, with the

highest hazard ratios observed in HER2�/Immune�/DRD+,

HER2�/Immune+, and HER2+/BP-HER2_or_Basal (Figures 5C

and S3B).

The potential gain in pCR rate from RPS-5 reclassification

was not evenly distributed across HR/HER2 subtypes. As
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Figure 6. Response-predictive subtyping

schema characteristics diagram for R11

example schemas

(A) Pie charts showing the number (3–8) and prev-

alence of subtypes in each schema (column).

(B) Grid of constituent biomarkers (purple = present,

white = absent).

(C) Treatment arms with the highest pCR rate

in R1 subtype (turquoise = selected, cream = not

selected).

(D) In silico experiment bar plot showing pCR rates

achieved in the control arm (black) and experimental

arms (orange); estimated pCR rates if treatments

had been optimally assigned using receptor sub-

type (red) or by the response-predictive schema in

the column (blue).

(E) Bar plot showing gain in pCR relative to receptor

subtype.

See also Figure S4.
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illustrated to the right in Figure 5B, in the HR�HER2+ subtype

there was no pCR increase by switching to the RPS-5 as

they are within the HER2+/BP-HER2_or_Basal subtype,

whereas in the HR+HER2+ receptor subtype, switching to the

RPS-5 could increase the pCR rate by 16% (from 51% to

67%). In addition to boosting response rates over the popula-

tion, a good subtyping schema should also discriminate be-

tween responders and non-responders over a wide range of

treatment classes. We used bias-corrected mutual information

(BCMI), which quantifies the amount of uncertainty about pCR

probability that is reduced by knowing subtype versus not

knowing it, to compare the predictive power of different sub-

typing schemas. To visualize the pCR-predictive goodness of

the RPS-5 schema versus the receptor subtype we plotted as-

sociation p value versus BCMI for both classification schemas

in each arm of the trial (Figure S3C). For most drug arms (7/10),

the RPS-5 schema was more predictive of pCR than the recep-
C

tor subtype as can be seen by the higher

concentration of points in the upper-

right quadrant with high BCMI and low

p values (Figure S3C).

Adapting response-predictive
subtyping schemas to a rapidly
evolving treatment landscape
Adding new drug classes to the trial in the

future may call for the incorporation of

additional biomarkers and necessitate re-

visions to the classification schema. For

example, an agent targeting HER2-low

cancers, defined as HER2 IHC 2+ or 1+

and fluorescence in situ hybridization

(FISH)�, is being evaluated in I-SPY2. If

we transform HER2 status from the binary

HER2+/� classes to three levels (HER2 = 0,

HER2-low, and HER2+) as shown in the

Sankey diagram in Figure S4A, and inte-

grate it with Immune, DRD, HR, HER2,

and BP-Luminal, we arrived at a
7-subtype schema, the RPS-7, with subtypes S1: HER2+/BP-

HER2_or_Basal, S2: HER2+/BP-Luminal, S3: HER2 = 0.or.low/

Immune+, S4: HR�/HER2-low/Immune�/DRD�, S5: HER2 =

0.or.low/Immune�/DRD+, S6: HER2 = 0/Immune�/DRD�, and
S7: HR+/HER2-low/Immune�DRD� (Figure S4B). Agents

yielding the highest pCR rates are THP (78%), MK2206 (60%),

Pembro (79%), ganitumab (40%), VC (60%), N or MK2206

(20%), and MK2206 (20%) for S1–S7, respectively. This schema

added 11%pCR over optimal assignments using receptors only,

even without a HER2-low targeted agent (pCR: 63% versus

52%; Figure S4C).

The characteristics and relative pCR rates of RPS-5, RPS-7,

and the 9 other subtyping schemas defined in Figure S2B are

summarized in Figures 6A–6E. For example, the RPS-5 (third col-

umn from left) creates five classes (Figure 6A) defined by HER2,

Immune, DRD, and Luminal status (Figure 6B), that if used to

prioritize treatment arms by class would select Pembro,
ancer Cell 40, 609–623, June 13, 2022 617
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Figure 7. Impact of subtyping schema on

minimum required efficacy of new agent

(HER2-low example)

(A) Sankey plot showing a variety of ways to combine

HER2-low status with HR and Immune/DRD.

(B) Scatterplot showing prevalence of HER2-low

subsets (x axis) versus the minimum pCR rate

required for an anti-HER2-low agent to equal that

of the I-SPY2 agent with the highest response

(minimum efficacy; y axis).
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pertuzumab, MK2206, and VC (Figure 6C) and result in a pCR

rate of 58% overall in the I-SPY2 population (Figure 6D), a 7%

gain over the maximum possible for receptor status (Figure 6E).

Similarly, the composition and performance of the RPS-7 (right-

most column) is summarized per above, including its selection of

ganitumab and N as the best agent within a subtype. Looking at

these schemas together, we observed that different schemas

select different ‘‘best’’ treatments. Some agents were optimal

for at least one subtype in nearly all schemas (e.g., Pembro, per-

tuzumab), while some were not selected in any schemas. Some

agents are only selected when biological phenotypes in addition

to HR/HER2 were incorporated (e.g., MK2206). All of the agents

that graduated for efficacy appear optimal in at least one

schema, and two—ganetespib and ganitumab—that did not

graduate for efficacy were selected as optimal in schemas

incorporating the classes TN/Immune�/BP-Basal or TN/HER2-
low/Immune�/DRD�, including the RPS-7, an illustration that

conventional HR/HER2 subtyping may not be able to identify a

responding subset for some agents. Estimated maximum pCR

rates differed by subtyping schema as well, ranging from 49%

to 63%, suggesting a cap of <65% pCR for the 10 treatments

included in the I-SPY2-990, irrespective of biomarker-based

treatment assignment schema.
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The RPS-7 and other HER2 three-state-

containing schemas also illustrated that

when introducing a new class of agent

such as a HER2-low inhibitor, the minimum

required efficacy to improve pCR rates de-

pends strongly on the biomarker subset in

which it is tested. For example, in RPS-7,

HER2-low patients fall into 4 groups

(RPS-7 classes S3–S5 and S7), with pCR

rates to the most efficacious agent ranging

from 20% to 70%with current I-SPY2 ther-

apies (Figure S4B). In addition, other rele-

vant HER2-low subsets may include all

HER2-low or HR+/HER2-low, among

others (Figure 7A). If tested in the HR+/

HER2-low/Immune�/DRD� group, then a

HER2-low agent must reach a pCR rate of

only 20% to exceed the maximum

response currently attainable from any

agent tested so far in the trial (Figure 7B).

This subset constitutes 20% of all HER2�,
and 38% of HR+HER2� patients in the

I-SPY2 trial. In contrast, if the developer

were to test the agent in all HER2-low pa-
tients, then, although the prevalence was higher (�65% of

HER2�), the minimum efficacy for adding value to the I-SPY2

agent arsenal was considerably higher at 44% pCR (Figure 7B).

DISCUSSION

With this paper, we make public the I-SPY2-990 mRNA/RPPA

Data Resource, a data compendium containing pre-

treatment gene expression data, tumor epithelium-specific pro-

tein/phosphoprotein data, and clinical/response information for

�990 breast cancer patients from the first 10 completed arms

of the I-SPY2 neoadjuvant chemotherapy/targeted-therapy plat-

form trial for high-risk, early-stage breast cancer. These high-

quality molecular data collected using common protocols and

a centralized workflow constitute a unique resource containing

patient-level response data to a wide variety of anticancer

agents with very different mechanisms of action, including

DNA-damaging agents (platinum, anthracycline), PARP inhibi-

tors, AKT inhibitors, angiogenesis inhibitors (Ang1/2; Tie2),

immunotherapy (PD1), small-molecule pan-HER2 inhibitors,

and dual-HER2-targeting therapies.

To date, these data have been used to power our Qualifying

(hypothesis testing) and Exploratory (discovery/hypothesis
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generating) Biomarker programs, in which we have tested previ-

ously published mechanism-of-action biomarkers as predictors

of response to platinum-based therapy (Wolf et al., 2017), N

(Wulfkuhle et al., 2018), the AKT inhibitor MK2206 (Wolf et al.,

2020a), the PD1 inhibitor Pembro (Yau et al., 2019; Gonzalez-

Ericsson et al., 2021), dual anti-HER2 therapies TDM1/P and

pertuzumab (Clark et al., 2021; Wolf et al., 2020b), and anti-

Ang1/2 therapy trebananib (Wolf et al., 2018), among others

(Kim et al., 2021). In this paper, we extended our previous

work by assessing the performance of successful biomarkers

across arms and found that all of the examined biomarkers asso-

ciated with response in at least one arm other than the one in

which they were proposed as predictors. Expression signatures

from Immune, proliferation, and ER/Luminal pathways are pre-

dictive of responses to multiple regimens targeting diverse path-

ways in multiple subtypes, including HER2-targeted agents for

HER2+ subtypes. In contrast, phosphoproteins from HER2,

EGFR, AKT/mTOR, and other pathways appear specific in pre-

dicting the response to agents targeting related mechanisms

of action. More generally, we found that the most specific

biomarker may not be the most predictive, and that different re-

ceptor subtypes may have different predictive biomarkers to the

same agents.

By viewing biomarker results in this larger 10-arm context, we

here refine our understanding of who responds to which therapy

and why. Responders to immunotherapy have high levels of im-

mune signatures, but different receptor subtypes seem to have

different predictive biology: high dendritic, chemokine, and

STAT1 cells/signals best predict the response for TN, whereas

high B cell combined with low mast cell signals best predict

pCR in HR+HER2�. An exploratory cross-platform immune

expression biomarker analysis further details immune subpopu-

lations and their association with response (Yau et al., 2019).

RPPA-based quantitative tumor epithelium major histocompati-

bility complex class II (MHC class II) levels and activation (phos-

phorylation) of STAT1 at pre-treatment were recently found to

strongly associate with the response to both Pembro in I-SPY2

(Gonzalez-Ericsson et al., 2021) and durvalumab in the neo-adju-

vant setting (NCT02489448) (Pusztai et al., 2021). Platinum agent

plus PARP inhibitor veliparib response is predicted by high DRD

and STAT1-related immune signaling in TN and by both DRD and

high proliferation in the HR+HER2� subset. HER2+ dual-HER2-

targeted therapy responders tend to have higher HER2 signaling

on expression, protein, and phosphoprotein levels, with prolifer-

ation signals providing the potential for discrimination of

response between TDM1/P and THP in the HR+HER2+ subset

(Clark et al., 2021).

We then applied these insights and clinical considerations to

develop response-predictive subtyping schemas that incorpo-

rate tumor biology beyond clinical HR/HER2 status that may bet-

ter inform agent selection in a modern treatment landscape.

Candidate ‘‘fit for purpose’’ biological phenotypes to add to

HR/HER2 included proliferation, DRD, Immune, Luminal, Basal,

and HER2ness, selected because they predict the response to

newer agent classes that are likely to be found in the clinic today.

However, when so many phenotypes are considered, there is a

combinatorial explosion in the possible number of marker states

andmany ways to collapse them into useful response-predictive

subtyping schemas with fewer classes. To help sort through the
options, we reasoned that an ideal response-predictive subtyp-

ing schema should (1) differentiate optimal treatments, meaning

that different subtype classes should have different best treat-

ments yielding the highest pCR probability; (2) result in a higher

pCR rate in the population if used to optimally assign/prioritize

treatments; (3) differentiate between responders and non-

responders over a wide range of treatments; and (4) be robust

to platform and applicable across different drugs with the

same mechanism of action and simple to implement clinically.

Of theR11 potential mRNA expression-based response-pre-

dictive subtyping schemas we explored, we selected the treat-

ment Response Predictive Subtype 5 (RPS-5) for prospective

evaluation in I-SPY2. This schemawasmotivated by clinical con-

siderations in TN and HER2+. Both immunotherapy and plat-

inum-based therapy arms graduated in the TN subset in

I-SPY2. These results were subsequently validated in the large

randomized trials BrighTNess (Loibl et al., 2018) and

KEYNOTE-522 (Schmid et al., 2020). These drugs are now

increasingly used in clinical practice individually or together.

We classified TN patients by Immune and DRDmarkers to deter-

mine whether the same or different populations are responding

to each class of therapy and whether this information could be

used to spare patients the toxicity of combined platinum-based

and immunotherapy if both are not needed to achieve pCR. We

applied the same stratification to HR+HER2� patients based on

the efficacy of Pembro, the many immune markers associated

with response in that arm and other immunotherapy arms in

I-SPY2; and previous work showing that responders to VC can

be identified by DRD biomarkers such as PARPi7 combined

with MP2 class (Wolf et al., 2017), and also by the BP-Basal sub-

type (Krijgsman et al., 2012). We used BP-Basal classification as

our measure to assess the DRD phenotype in HR+HER2�

because the assay is performed in a CLIA setting and is ready

for clinical implementation with a pending Investigational Device

Exemption (IDE) application submission to the US Food and

Drug Administration (FDA), even though the research assay-

based PARPi7-high/MP2 performed somewhat better in this da-

taset. HER2+ patients were re-classified by Luminal signaling to

better identify subsets that are likely to respond to dual-anti-

HER2 therapy versus those that may need a different approach.

The resulting, simplified RPS-5 has five subtypes: HER2�/
Immune�/DRD�, HER2�/Immune+, HER2�/Immune�/DRD+,

HER2+/BP-HER2_or_Basal, and HER2+/BP-Luminal. Using this

schema to maximize pCR rates, one would prioritize platinum-

based therapy for HER2�/Immune�/DRD+, checkpoint inhibitor

therapy for HER2�/Immune+, and dual-anti-HER2 therapy for

HER2+ that is not Luminal. HER2+/Luminal patients have very

low response rates to dual-anti-HER2 therapy, but they may

respond better to combination therapy, including an AKT inhibi-

tor. HR positivity, although very important in general for deter-

mining who should receive adjuvant endocrine therapy, is not

used in this response-predictive schema, as further subdivisions

based on HR status would not affect agent prioritization. In our in

silico experiment, treatment assignment based onmatching HR/

HER2 subsets to the most effective therapy improves trial-level

pCR from 19% to 51%, and assignment based on RPS-5 added

a further 7% improvement to 58% pCR.

More generally, we showed that molecular subtyping cate-

gories incorporating biology outside HR/HER2 could be created
Cancer Cell 40, 609–623, June 13, 2022 619



ll
OPEN ACCESS Article
and that these updated categories can better inform treatment

assignment to new emerging therapies for breast cancer for in-

dividual patients and increase efficacy (i.e., pCR rate) over the

entire treatment population. However, when comparing the rela-

tive contributions of improved biomarkers versus improved

agents to response rate over the entire trial population, we

observe that most of the pCR benefit appears to derive from

the ‘‘right’’ treatments (+30%), and an additional sizable pCR

benefit comes from improved biomarker schemas (%10%–

15%). With the current agents, the highest pCR rate over the

I-SPY2 population appears capped at �65% in the best per-

forming schemas incorporating Immune, Luminal, and HER2

three-state biomarkers. This limitation likely derives from a

sizable patient population with Luminal biology who are

Immune� and DRD� who did not respond to any of the treat-

ments under study. Many of these patients are predicted endo-

crine responsive and may benefit from neoadjuvant endocrine

therapy, an approach we are considering testing in the future.

We observe that different schemas have different sets of best

treatments, with some treatments (e.g., Pembro) chosen by all

schemas and others by a subset of schemas or not at all,

although that is partially a consequence of the biological pheno-

types included. As new agent classes that may help further

improve response rate over the population become available,

we will need to incorporate additional biological phenotypes

into the existing subtyping schemas that only classify cancers

optimally for existing agents. Using HER2-low-targeted agents

as an example (an agent in this class is currently in I-SPY2), we

developed a revised schema incorporating HER2 status as a

three-state variable (HER2-0, HER2-low, HER2+), and the result-

ing treatment RPS-7 classification further improved pCR rates in

the overall population in our in silico experiments. This example

also illustrates that the minimum efficacy required to demon-

strate benefit (over best available agent) differs by biomarker

subsets.

It is important to note that we make a distinction between pre-

dictive biological phenotypes like Immune+ and their implemen-

tation. For instance, in our study, Immune+ is based on a variety

of different subtype-specific signatures (e.g., B cell signature in

HR+, STAT1/chemokine signature in TN). We acknowledge that

other signatures reflecting similar biology may also be used to

identify the same biological phenotype and may show similar

or improved predictive performance, since biomarkers that cap-

ture the same biology are highly correlated and the underlying

biological signals are robust. We acknowledge that the imple-

mentation we selected in this study would require translation

to a straightforward single-sample predictor for implementation

in a clinical setting. CLIA compliant, clinically actionable versions

of some of our selected biomarkers have been developed, and

an IDE submission is under way to enable prospective testing

in the next-generation I-SPY2.2 trial. However, the idea is that

as improved biomarkers are developed, the best available can

be swapped in to implement the phenotype in the clinic.

The I-SPY2-990 Data Resource and our analyses have limita-

tions. Although the overall resource represents an unparalleled

cohort of clinically well-annotated neoadjuvant multi-arm tar-

geted/chemotherapymolecular data, each arm is relatively small

(44–120 patients); further dividing these groups by receptor sub-

type or by one of the response-predictive subtyping schemas,
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the numbers become even smaller, and the cohort sizes are un-

equal. This limits the power of analysis. In addition, I-SPY2 uses

adaptive randomization within HR/HER2/MP defined subtypes

to enable efficient matching of novel regimens with their most

responsive traditional clinical subtypes. Thismay result in the un-

balanced prevalence of biomarker-positive subsets in experi-

mental and control arms if a biomarker subset is correlated

with a HR/HER2/MP subset that is preferentially enriched or

depleted in an experimental arm by the randomization engine.

For combination therapies (e.g., VC, TDM1/P), it is impossible

to tease out the relative contributions of each agent to response

or to assess whether a biomarker is predictive of response to the

individual agents within the combination. Altogether, these chal-

lenges limit our ability to draw definitive conclusions. Thus, our

statistics are descriptive rather than inferential, and all individual

predictors of response require further testing to assess their pre-

diction characteristics within different treatment settings.

Another limitation to our underlying biomarker data is that

while we used a multi-omic biomarker approach to generate

multiplexed RNA-protein-phosphoprotein data as well as

CLIA-based platforms, the study is limited to having only two

biomarker platforms and by the selection of the short list of

continuous qualifying biomarkers as our focus. For instance,

we cannot include some well-studied biomarkers, such as

HRD and other DNA ‘‘scar’’ assays for DNA-repair deficiency,

which require DNA sequencing data, and we do not include

exploratory whole-transcriptome or whole-RPPA array analyses,

which are ongoing.

In conclusion, we expect the I-SPY2-990 mRNA/RPPA Data

Resource to be highly valuable to the breast cancer research

and drug development community, and ultimately to patients.

We found biomarkers predictive of response to a variety of

agents with different mechanisms of action and proposed a

framework for identifying a response-predictive subtyping

schema for prioritizing therapies. Within this framework, we pro-

pose a clinically relevant breast cancer classification schema

incorporating Immune, DRD, and Luminal-like biological pheno-

types with HER2 status that may improve agent prioritization for

individual patients and increase pCR rates over the population.

We plan to prospectively test our response-predictive subtyping

schema in I-SPY2.2, an upcoming version of the I-SPY2 trial that

incorporates a sequential multiple assignment randomize trial

(SMART) scheme and adapts treatment within individual patients

based on biology and response.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Tumor biopsy before treatment I-SPY2 TRIAL https://clinicaltrials.gov/ct2/show/NCT01042379

Critical commercial assays

Custom Agilent 32K expression arrays

(Agendia32627_DPv1.14_SCFGplus)

Agendia, Inc https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL20078

Custom Agilent 44K expression arrays

(Agilent_human_DiscoverPrint_15746)

Agendia, Inc https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL30493

MammaPrint Agendia, Inc https://agendia.com/mammaprint/

BluePrint Agendia, Inc https://agendia.com/blueprint/

Reverse phase protein array (RPPA) Petricoin Lab, George

Mason University

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL28470

Deposited data

Raw and processed transcriptomic

data

This study Gene Expression Omnibus (GEO) SubSeries GSE194040 (mRNA),

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE194040,

as part of the SuperSeries GSE196096 (https://www.ncbi.nlm.nih.

gov/geo/query/acc.cgi?acc=GSE196096 );

and in the I-SPY2 Google Cloud repository (www.ispytrials.org/

results/data)

Raw and processed RPPA data This study Gene Expression Omnibus (GEO) SubSeries GSE196093 (RPPA)

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE196093,

as part of the SuperSeries GSE196096 (https://www.ncbi.nlm.nih.

gov/geo/query/acc.cgi?acc=GSE196096 );

and in the I-SPY2 Google Cloud repository (www.ispytrials.org/

results/data)

Patient-level expression signature

and clinical data

This study Gene Expression Omnibus (GEO) SuperSeries GSE196096

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE196096 ) and Table S2

and in the I-SPY2 Google Cloud repository (www.ispytrials.

org/results/data).

Software and algorithms

stats R package (v.3.6.3) R Core Team (2020) https://stat.ethz.ch/R-manual/R-devel/library/stats/html/

stats-package.html

lmtest R package (v.0.9-37) (Zeileis and Hothorn, 2002) https://CRAN.R-project.org/package=lmtest

googleVis R package (v.0.6.4) (Gesmann and de castillo, 2011) https://CRAN.R-project.org/package=googleVis

survival R package (v.3.1-12) (Therneau and Grambsh, 2000) https://CRAN.R-project.org/package=survival

mpmi R package (v.0.43) (Pardy and Wilson, 2010) http://r-forge.r-project.org/projects/mpmi/
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources or data should be directed to and will be fulfilled by Denise Wolf (Denise.Wolf@

ucsf.edu)

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Transcriptomic, protein/phospho-protein and clinical data used in this study is available in NCBI’s Gene Expression Omnibus

(GEO) SuperSeries GSE196096 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE196096) and its two SubSeries
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GSE194040 (mRNA: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE194040) and GSE196093 (RPPA: https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE196093), and through the I-SPY2 Google Cloud repository (www.

ispytrials.org/results/data). Data on GEO represents the data as currently recorded in our database. Patient-level scores for

the 27 qualifying biomarker scores and response data analyzed in this paper, and the RPS-5, RPS-7 and other subtype clas-

sifications and their constituent biomarkers presented herein are available in Table S2. Additional de-identified subject level

data may be requested by qualified investigators. Details of the trial, data, contact information, proposal forms, and review

and approval process are available at the following website: https://www.ispytrials.org/collaborate/proposal-submissions.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon

request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

I-SPY2 TRIAL overview
I-SPY2 is an ongoing, open-label, adaptive, randomized phase II, multicenter trial of neoadjuvant therapy for early-stage breast can-

cer (NCT01042379; IND 105139). It is a platform trial evaluatingmultiple investigational arms in parallel against a common standard of

care control arm. The primary endpoint is pCR (ypT0/is, ypN0), defined as the absence of invasive cancer in the breast and regional

nodes at the time of surgery. As I-SPY2 ismodified intent-to-treat, patients receiving any dose of study therapy are considered evalu-

able; those who switch to non-protocol therapy, progress, forgo surgery, or withdraw are deemed ‘non-pCR’. Secondary endpoints

include residual cancer burden (RCB) and event-free and distant relapse-free survival (EFS and DRFS) (Symmans et al., 2007)

Trial design
Assessments at screening establish eligibility and classify participants into subtypes defined by hormone receptor (HR) status, HER2,

and 70-gene signature (MammaPrint�) status (Cardoso et al., 2016; Piccart et al., 2021). Adaptive randomization in I-SPY2 prefer-

entially assigns patients to trial arms according to continuously updated Bayesian probabilities of pCR rates within each biomarker

signature; 20% of patients are randomly assigned to the control arm (Berry, 2011). While accrual is ongoing, a statistical engine as-

sesses the accumulating pathologic and MRI responses at weeks 3 and 12 and continuously re-estimates the probabilities of an

experimental arm being superior to the control in each defined biomarker signature. An arm can be dropped for futility if the predicted

probability of success in a future 300-patient, 1:1 randomized, phase 3 trial drops below 10%, or graduate for efficacy if the prob-

ability of success reaches 85% or greater in any biomarker signature. The clinical control arm for the efficacy analysis uses patients

randomized throughout the entire trial. Experimental arms have variable sample sizes: highly effective therapies graduate with fewer

patients in the experimental arm; arms that are equal to, or marginally better than, the control arm accrue slower and are stopped if

they have not graduated, or terminated for lack of efficacy, before reaching a sample size of 75. During the design of each new exper-

imental arm the investigators together with the pharmaceutical sponsor decide in which of the 10 a priori defined biomarker signa-

tures the drug will be tested. Upon entry to the trial, participants are dichotomized into hormone receptor (HR) negative versus pos-

itive, HER2 positive versus negative, andMammaPrint High1 [MP1] versus High2 [MP2] status. From these 8 biomarker combinations

(2x2x2) I-SPY has created 10 biomarker signatures that represent the disease subsets of interest (e.g. all patients, all HR+, all HER2+,

HR+/HER2, etc., for complete list see reference Berry 2011) in which a drug can be tested for efficacy.

Efficacy is monitored in each of these 10 biomarker signatures separately and an arm could graduate in any or all biomarker signa-

ture of interest. When graduation occurs, accrual to the arm stops, final efficacy results are updated when all pathology results are

complete. The final estimated pCR results therefore may differ from the predicted pCR rate at the time of graduation. Additional de-

tails on the study design have been published elsewhere (Park et al., 2016; Rugo et al., 2016).

Eligibility
Participants eligible for I-SPY2 are women >18 years of age with stage II or III breast cancer with aminimum tumor size of >2$5 cm by

clinical exam, or >2$0 cm by imaging, and Eastern Cooperative Oncology Group performance status of 0 or 1 (Oken et al., 1982). HR-

positive/HER2-negative cancers assessed as low risk by the 70-geneMammaPrint test are ineligible as they receive little benefit from

systemic chemotherapy.

Treatment
This correlative study involved 987 women with high-risk stage II and III early breast cancer who were enrolled in 10 arms of I-SPY2:

the first 9 experimental arms that completed evaluation and the control arm as shown in the schema of Figure 1A. During this

same period (2010-2017), one arm was stopped due to toxicity with few patients enrolled and is not included in this evaluation.

All patients received at least standard chemotherapy (paclitaxel alone followed by doxorubicin/cyclophosphamide (T->AC; or

with trastuzumab (H) in HER2+, T+H->AC)) or in combination (taxane phase) with investigational agents: veliparib/carboplatin (VC;

HER2- only: VC -> AC); neratinib (N; All patients: T+ N->AC ); MK2206 (HER2-: T+MK2206->AC; HER2+: T+H+MK2206->AC);

ganitumab (HER2- only: T+ganitumab->AC); ganetespib (HER2- only: T+ganetespib->AC); trebananib (previously called

AMG386; HER2-: T+trebananib->AC; HER2+: T+H+trebananib->AC); TDM1/pertuzumab (P) (HER2+: TDM1/P->AC); pertuzumab
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(HER2+: T+H+pertuzumab->AC); and pembrolizumab (Pembro; HER2-: T+Pembro->AC). For HER2+ patients, N was administered

instead of H, whereas MK2206 and trebananib were administered in addition to H. Dose reductions and toxicity management were

specified in the protocol. Adverse events were collected according to the NCI Common Terminology Criteria for Adverse Events

(CTCAE) version 4.0. After completion of AC, patients underwent lumpectomy or mastectomy and nodal sampling, with choice of

surgery at the discretion of the treating surgeon. Detailed descriptions of the design, eligibility, and efficacy of these 9 experimental

arms of the I-SPY2 trial have been reported previously (Chien et al., 2019; Clark et al., 2021; Nanda et al., 2020; Park et al., 2016;

Pusztai et al., 2021; Rugo et al., 2016).

Trial oversight
I-SPY2 is conducted in accordancewith the guidelines for GoodClinical Practice and the Declaration of Helsinki, with approval for the

study protocol and associated amendments obtained from independent ethics committees at each site. Written, informed consent

was obtained from each participant prior to screening and again prior to treatment. The I-SPY2 Data Safety Monitoring Board meets

monthly to review patient safety.

METHOD DETAILS

Pretreatment biopsy processing and molecular profiling
Core needle biopsies of 16-gauge were taken from the primary breast tumor before treatment. Collected tissue samples are imme-

diately frozen in Tissue-Tek�O.C.T.� embeddingmedia and then stored in -80�C until further processing. An 8mMsection is stained

with hematoxylin and eosin (H&E) and pathologic evaluation performed to confirm the tissue contains at least 30% tumor. A tissue

sample meeting the 30% tumor requirement is further cryosectioned at 30 mM. Twenty to thirty sections are collected and

emulsified in 0.5ml Qiazol solution and the tubes are sent on dry ice to Agendia, Inc., for RNA extraction and gene expression

profiling on Agilent 44K (Agilent_human_DiscoverPrint_15746 with annotation GPL30493 (update of GPL16233); n=333) or 32K

(Agendia32627_DPv1.14_SCFGplus with annotation GPL20078; n=654) expression arrays. For each array, the green channel

mean signal was log2-tranformed and centeredwithin array to its 75th quantile as per themanufacturer’s data processing recommen-

dations. All values indicated for non-conformity are NA’d out; and a fixed value of 9.5 was added to avoid negative values. Probeset

level data per array were mean-collapsed to the gene level, and genes common to the two platforms identified. Expression data from

the first �900 I-SPY2 patients distributed over the two platforms GPL30493 (n=333) and GPL20078 (n=545) were combined into a

single gene-level dataset after batch-adjusting using ComBat (Johnson et al., 2007). Linear adjustment factors were derived from the

larger ComBat operation, per platform, which can be used to batch correct raw files. The subsequent �90 samples, assayed on

GPL20078, were batch corrected using these factors and added to the original set, yielding a normalized expression dataset

comprising 987 patients x 19,134 (common) genes. These transcriptomic data and the associated batch correction model coeffi-

cients are available in NCBI’s Gene Expression Omnibus (GEO), SubSeries GSE194040 (mRNA) (https://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc=GSE194040) and through the I-SPY2 Google Cloud repository (www.ispytrials.org/results/data).

In addition, laser capture microdissection (LCM) was performed on pre-treatment biopsy specimens to isolate tumor epithelium

for signaling protein and phospho-protein profiling by reverse phase protein arrays (RPPA) in the Petricoin Lab at GeorgeMason Uni-

versity, as previously published (Wulfkuhle et al., 2018). Approximately 10,000 cells are captured per sample. RPPA samples were

assayed on three arrays, each containing hundreds of samples from different arms of the trial quantifying up to 140 protein/phospho-

protein endpoints (GPL28470). To remove batch effects we standardized each array prior to combining, by (1) sampling 5000 times,

maintaining a receptor subtype balance equal to that of the first �1000 patients (HR+HER2-: 0.384, TN:0.368, HR+HER2+:0.158,

HR-HER2+:0.09); (2) calculating the mean(mean) and mean(sd) for each RPPA endpoint; (3) z-scoring each endpoint using the

calculated mean/sd from (2). The consort diagram with the number of evaluable patients for each molecular profiling analysis is

shown in Figure 1D. Details of the RPPA sample preparation and data processing are as previously described (Wulfkuhle et al.,

2018). These RPPA data for 736 patients (all arms except ganitumab and ganetespib) are available in NCBI’s Gene Expression

Omnibus (GEO), SubSeries GSE196093 (RPPA) (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE196093) and through

the I-SPY2 Google Cloud repository (www.ispytrials.org/results/data).

Continuous gene expression biomarkers assessed
Twenty-six prospectively defined, mechanism-of-action and pathway-based expression and protein/phospho-protein continuous

signatures assayed from pre-treatment biopsies were previously found to be predictive in a particular agent/arm in pre-specified

QBE analysis. We also include an exploratory VC-response signature for the TN subset reflecting both DNA repair deficiency and

Immune expression that validated in BrighTNess and therefore achieved qualifying status, for a total of 27 continuous biomarkers

considered in our analysis (see Table S1 for genes/proteins included per signature and scoringmethod; and Table S2 for patient-level

biomarker scores).

VCpred_TN derivation: VCpred_TN is a continuous gene expression signature that associates with response to VC in the TN sub-

set. It differs from the other biomarkers in this study in that it was originally developed on I-SPY2 data, rather than previously pub-

lished and in pre-specified analysis validated (qualified) in I-SPY2.We developed this signature in 2018, when the decision wasmade

to switch I-SPY2 tumor biopsy tissue collection from fresh frozen (FF) as assayed for the I-SPY2-990 data compendium, to FFPE, and

after performing expression studies of 72 matched FF:FFPE pairs from I-SPY2 that suggested that the previous DRD biomarker
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implementation frontrunner, PARPi7, may not translate well. In a quest to develop a more robust DRD biomarker that might better

translate from FF to FFPE and between Agilent 44K platforms (GPL16233 and GPL20078) we developed VCpred_TN by: 1) collecting

a large set of DNA repair related genes (Knijnenburg et al., 2018) including those in the PARPi7, and adding to them a subset of im-

mune genes from module4 (Wolf et al., 2014) and IR7 (Teschendorff and Caldas, 2008), ESR1, and PGR, for a total of 162 genes; 2)

filtering those 162 genes for presence on both Agilent 44K array types used in this study and for correlation between FF and

FFPE samples using our 72-paired sample set (pearson correlation > 0.4), which yielded an 84 gene starting set for signature

development; and 3) assessing association between expression levels of each of the 84 genes and pCR in the VC arm, in the TN

subset using logistic modeling, after mean-centering the expression data. The resulting signature is the sum of -sign(coeff)*log(p)

for the top 25 most correlated genes in the starting set, where sign(coeff) the sign of association between a gene and pCR (positive

if higher levels associate with pCR, negative if higher levels associate with non-pCR), and p = the likelihood ratio test p–value. As also

appears in the above Table S1, VCpred_TN = 13.60*CXCL13 -6.48*BRCA1 + 6.41*APEX1 + 5.32*FEN1 + 4.85*CD8A - 4.84*SEM1 +

4.78*APEX2 - 4.60*RNMT + 4.51*CCR7 + 3.99*H2AFX + 3.88*POLD3 - 3.49*PRKDC + 3.48*C1QA + 3.33*CLIC5 - 3.24*RAD51 + 3.10

*DDB2 - 2.83*SPP1 - 2.80 *POLD2 - 2.80*POLB + 2.72*LIG1 -2.67*GTF2H5 – 2.63*PMS2 + 2.60*LY9 -2.34*SHPRH + 6.27*ARAF;

where the expression data is mean-centered by gene over all samples prior to evaluating this weighted sum, and the final signature

is z-scored to have mean=0 and sd=1.

Biological response-predictive phenotypes: Overview and implementation
Here we introduce the concept of and response-predictive biological phenotype, defined by considering promising treatments

(e.g. Immunotherapy, dual-HER2, and platinum-based) and basic cancer biology (e.g. proliferation). Patients are considered

Immune-positive (Immune+) if their immune-tumor state is such that they are likely to respond to immunotherapy, and DNA repair

deficient/platinum-responsive (DRD+) if response to a platinum agent with or without PARP-inhibition is likely. As biomarkers repre-

senting the same biology are correlated and can be subtype-specific (Figure 2), multiple immune and DRD markers can be used to

implement these biological phenotypes and perform similarly. Moreover, though we need to select example implementations for

response predictive phenotypes like Immune, HER2ness, Luminal, DRD, and proliferation, we do so with the expectation that as

improved biomarkers come available, they can be ‘swapped in’.

In general, we prefer to use categorical biomarkers, so as to not have to select thresholds using I-SPY2 trial data. Here we use

BluePrint subtype (Agendia; BP-Luminal, BP-HER2, BP-Basal) to implement HER2ness, Luminal and Basal biological phenotypes,

and MP2 class as a proliferation biomarker based on high levels of correlation to cell cycle/proliferation signatures.

Where necessary, we also dichotomize continuous biomarkers using a subtype-specific cross-validation procedure to optimize

performance as follows:

Biomarker dichotomization: To identify optimal (exploratory) dichotomizing thresholds for select biomarkers in a particular patient

subset, a cross-validation procedure was applied to selected endpoints associated with pCR in a selected treatment arm of the trial

to identify potential cut points for biomarker positivity. Two-fold cross-validation was repeated 1000 times, with test and training sets

balanced over pCR, using logistic models to assess association with response. A cutpoint was selected as ‘optimal’ if: (1) it was

selected as optimal >100 times in the training set; (2) p<E-15 in the test sets (combined using the logit method (Dewey, 2018));

and (3) the prevalence is reasonably balanced.

Immune phenotype: example implementation: In this study we use a subtype-specific implementation to define Immune-positive

(Immune+) tumors likely to respond to immunotherapy. Based on our qualifying biomarker analysis, for TN patients we used the

average of the dendritic cell and STAT1 signatures (Danaher et al., 2017; Rody et al., 2009; Yau et al., 2019). These biomarkers

were the top two most predictive of TN response to pembrolizumab in this study (Figure 3) and the STAT1 signature has been further

validated in the previously published durvalumab/olaparib arm of I-SPY2 (Pusztai et al., 2021) and in an independent Phase II trial

(NCT02489448) (Blenman et al., 2022; Foldi et al., 2021; Pusztai et al., 2021). Specifically, we (1) z-scored their average ((STAT1_

sig+Dendritic_sig)/2, denoted STAT1_Dendritic_ave), and (2) optimally dichotomized the averaged signatures per above using

pCR data from the Pembro arm, yielding a cutpoint of 0 (TN/Immune-high: STAT1_Dendritic_ave>=0; and TN/Immune-low:

STAT1_Dendritic_ave<0).

In the HR+HER2- subset, high B cell and low mast cell immune gene signatures were strong predictors of pCR to immunotherapy

(Figure 3) and we use them in dichotomized form as an example implementation for our Immune+ phenotype in this subset. This

choice was based on the observation that to achieve high predictive accuracy in the HR+HER2- subset, it is necessary to

combine a ‘sensitivity’ immune biomarker (e.g. B cell) with a second ‘resistance’ biomarker where high levels predict non-pCR

(either Mast cell or ESR1/PGR averaged). Applying the above dichotomization procedure yielded cutpoints 0.1495 for B_cells and

1.17 for Mast_cells (HR+HER2-/Immune-high: (B_cells>=0.1495) AND (Mast_cells<1.17); HR+HER2-/Immune-low: (B_cells<0.1495)

OR (Mast_cells>=1.17)).

For HER2+ patients, we optimally dichotomized the B_cells signature in the combined MK2206, control and neratinib arms where

immune signals associate with response, yielding a cutpoint of 0.58 (HER2+/Immune-high: B_cells>=0.58; HER2+/Immune-low:

B_cells<0.58).

DRD phenotype: example implementation: Our implementation of the DRD response-predictive phenotype is also subtype-spe-

cific. In the TN subset, we had intended to use the previously described PARPi7 gene signature (Figure 3; (Daemen et al., 2012;

Wolf et al., 2017)) as an example implementation, but it did not validate in the BrighTNess trial (Filho et al., 2021; Loibl et al.,

2018) (p>0.05). Instead we used the VCpred_TN signature developed in I-SPY2 (see above and Table S1), which validated in
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BrighTNess (p=5.08E-06) (Figure S5). We dichotomized the VCpred_TN using pCR data from the VC arm, using the above-described

cross–validation optimization procedure and also taking into account our intention of using this biomarker in a multi-agent context

with immunotherapy and an immune biomarker. Though the optimal cutpoint if only considering performance in VC is 0.35, this

threshold results in a clinically important subset defined by Immune-/DRD+ that is too small (4%) to be clinically reasonable. There-

fore we chose a ‘next best’ cutpoint of -0.31 (TN/DRD+: VCpred_TN>(-0.31); TN/DRD-: VCpred_TN<(-0.31)). With this cutpoint, the

Immune-/DRD+ subset is a more clinically actionable size at 11%.

We used BP-Basal classification as our measure to assess the DRD phenotype in HR+HER2- (HR+HER2-/DRD+: BP-Basal;

HR+HER2-/DRD-: BP-Luminal) because the assay is performed in a CLIA setting and is ready for clinical implementation with a

pending IDE application submission to the US FDA, even though the research assay based PARPi7-high/MP2 performed somewhat

better in this dataset (Daemen et al., 2012; Wolf et al., 2017).

Three-state clinical HER2 status:When considering a new HER2low-targeted agent, we used HER2 IHC levels (3+, 2+, 1+, 0) and

HER2 FISH to define a 3-class clinical HER2 biomarker HER2-3state (HER2=0: IHC 0 and FISH-; HER2low: IHC 2+/1+ and FISH-; and

HER2+: IHC 3+ or FISH+ as currently defined in the trial).

Combining response-predictive phenotypes and HR/HER2 status into response-predictive subtyping schemas
Oncemultiple response-predictive phenotypes are added to HR andHER2 status, there is a combinatorial explosion in the number of

possible states, and many ways to collapse them into a practical number of subtypes (<8 or 9). To sort through the options, we

reasoned that an ideal response-predictive subtyping schema should: R1) differentiate between treatments, meaning that different

classes should have different best treatments yielding the highest pCR probability; R2) result in a higher pCR rate in the population if

used to optimally assign/prioritize treatments; R3) differentiate between responders and non-responders over a wide range of treat-

ment classes; and R4) be robust to platform and within-class treatments, simple to implement, and FDA approved or performed in a

CLIA environment. For (R1) we generalize the ‘CarnaughMap’method used in circuit design to simplify digital logic (Brown, 1990). For

example, if HR+HER2-/Immune-/DRD+ and TN/Immune-/DRD+ classes both have VC as the treatment yielding the highest pCR rate,

we collapse them into a single class HER2-/Immune-/DRD+ as seen in Figure 5.

Implementation of previously published PAM50 and TNBC-4class and -7class subtyping schemas
In addition to standard clinical variables like HR, HER2, MP, pCR and Arm, several biomarker heatmaps (e.g., Figure 2) are annotated

for PAM50 and two TNBC classification schemas as well, evaluated as previously described. PAM50 intrinsic subtyping was per-

formed using Joel Parker’s centroid-based 50-gene classifier program (Parker et al., 2009) on a total of 1151 samples including

165 in the I-SPY low-risk registry (open to those who screen out of I-SPY2 due to assessment of low molecular risk by the

70-gene MammaPrint test). We included the low-risk registry patients in the dataset (mostly HR+HER2- Luminal A) prior to subtyping

because I-SPY2 HR+HER2- patients are all MP high risk (mostly Luminal B) and we wanted the population to be more representative

of the general breast cancer patient population as is required for sensible results. We also centered the genes on the mean value of

repeated subsampling (500 times) of 1:1 ER+:ER- prior to running the code, as previously advised by Katie Hoadley (private commu-

nication) to obtain classificationsmost consistent with their original paper. Finally, we set to NA any call with a confidence level < 0.08,

of which there were 14. TNBCtype classifications (7 classes: MSL, M, LAR, IM, BL2, BL1) were identified as published (Chen et al.,

2012; Lehmann et al., 2011) by uploading (non-median centered) expression data from the TN subset (n=363) to the online calculator

(https://cbc.app.vumc.org/tnbc/). The Burstein/Brown TN classifications (LAR, MES, BLIS, BLIA) were identified as published (Bur-

stein et al., 2015), by: (1) quantile transforming over their predictor genes; (2) calculating Euclidean distance to the 4 published cen-

troids; and (3) assigning class based on the closest (minimal distance) centroid. PAM50, TNBCtype and TNBC_BB subtype vectors

are included in the Table S2 containing the biomarkers and response-predictive subtyping schemas explored in this manuscript.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis of continuous gene expression biomarkers
Unsupervised clustering was performed using Pearson correlation and complete linkage. We assess association between each

continuous biomarker and response in the population as a whole and within each arm and HR/HER2 subtype using a logistic model.

In whole-population analyses, models are adjusted for HR, HER2, and treatment arm (pCR� biomarker + HR + HER2 + Tx). Within

treatment arms, models are adjusted for HR and HER2 as appropriate. Markers are analyzed individually; likelihood ratio (LR) test

p-values are descriptive. We also performed exploratory whole transcriptome analysis, per above, employing Benjamini-Hochberg

multiple testing correction (Huang et al., 2009), with a significance threshold of BH LR p<0.05 (Figure S1). Analyses and visualizations

were performed in the computing environment R (v.3.6.3) using R Packages ‘stats’ (v.3.6.3) and ‘lmtest’ (v.0.9-37) (Zeileis and Hot-

horn, 2002).

Response-predictive subtyping schema characterization
Sankey plots were used to visualize relationships between receptor subtype and alternative response predictive subtyping schemas

using the R package GoogleVis (v.0.6.4) (Gesmann and de Castillo, 2011). For each subtype in each schema, we calculated pCR

rates in each arm with sufficient patients and displayed the results (100*(number of patients with pCR)/total) in bar plots.

A major goal of a response-predictive schema is to increase the pCR rate in the population and to maximize the probability of
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pCR for an individual patient (R2). To characterize the potential impact of the classification, we calculated the overall pCR rate in the

I-SPY2 population had treatments been optimally assigned according to the response-predictive subtypes using the same

10 drugs. To this end, we: (1) calculated the prevalence of each subtype in the schema (prev_STi = (number of patients in STi)/(total

number of patients), i=1:n, n=number of subtypes); (2) collected highest-pCR rates observed in an I-SPY2 arm for each subtype

(pCR_max_STi); and (3) calculated a simple estimate of the pCR rate over the population as the weighted sum pCR_max_total =

prev_ST1*pCR_max_ST1+ prev_ST2*pCR_max_ST2 +.prev_STn*pCR_max_STn. This calculation results in both an estimate of

pCR over the population using the alternative subtyping schema, and identification of agents/combinations maximizing pCR for

each subtype.

To characterize the pCR-predictive power of a subtyping schema within an arm (R3), we use bias corrected mutual information

(BCMI; R package mpmi http://r-forge.r-project.org/projects/mpmi/) (Pardy and Wilson, 2010), which quantifies the amount of un-

certainty reduced about pCR by knowing subtype. These values are then visualized across arms in a scatter plot with BCMI and

pCR-association p-values (LR p) on the axis, for both receptor subtype and a response-predictive subtyping schema to visualize

differences.

In addition, we used Fisher’s exact test for associations with response, and Cox proportional hazards modeling to estimate DRFS

hazard ratios for pCRwithin eachRPS-5 subtype. The latter were performed using the coxph andSurv functionswithin the R package

survival (Therneau and Grambsch, 2000).

ADDITIONAL RESOURCES

More information about the I-SPY 2 platform trial (NCT01042379) and associated resources can be found at https://clinicaltrials.gov/

ct2/show/NCT01042379, https://www.ispytrials.org/i-spy-platform/i-spy2 and https://ispypatient.org.
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