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Breast cancer is one of the most pervasive forms of cancer and its inherent intra- and inter-tumor 
heterogeneity contributes towards its poor prognosis. Multiple studies have reported results from 
either private institutional data or publicly available datasets. However, current public datasets are 
limited in terms of having consistency in: a) data quality, b) quality of expert annotation of pathology, 
and c) availability of baseline results from computational algorithms. To address these limitations, 
here we propose the enhancement of the I-SPY1 data collection, with uniformly curated data, tumor 
annotations, and quantitative imaging features. Specifically, the proposed dataset includes a) uniformly 
processed scans that are harmonized to match intensity and spatial characteristics, facilitating 
immediate use in computational studies, b) computationally-generated and manually-revised expert 
annotations of tumor regions, as well as c) a comprehensive set of quantitative imaging (also known 
as radiomic) features corresponding to the tumor regions. This collection describes our contribution 
towards repeatable, reproducible, and comparative quantitative studies leading to new predictive, 
prognostic, and diagnostic assessments.

Background & Summary
The spatial manifestation of inter- and intra-tumor heterogeneity in breast cancer is well established1,2. Current 
breast cancer diagnosis and subsequent disease management primarily occurs on the basis of histopathologic 
assessment and biomarkers, which are derived from the sampled tissue. Utilization of biopsies and conventional 
biomarkers cannot fully capture the intra-tumor heterogeneity, as they are limited by the tissue sampling error, 
leading to over- or under-treatment. As such, there is a clinical need to characterize the intra-tumor heterogene-
ity to better understand this disease and its progression mechanisms.

The use of magnetic resonance imaging (MRI) in breast cancer screening, diagnosis, and treatment man-
agement, allows for the non-invasive and longitudinal sampling of disease burden3,4. Beyond the conventional 
and qualitative uses of MRI in breast cancer disease management, the field of radiomics, broadly defined as the 
extraction of high-throughput visual and sub-visual cues derived from medical imaging5–7, has allowed for a 
quantitative characterization and assessment of the breast tumor disease burden. This has led to the develop-
ment of prognostic and predictive radiomic biomarkers that capture breast intra-tumor heterogeneity, promot-
ing personalized clinical decision making8.

Clinical and computational studies analyzing the radiologic presentations of breast tumor disease burden 
require ample and diverse data to ensure robust characterization. Publicly available datasets, such as those 
hosted through The Cancer Imaging Archive (TCIA www.cancerimagingarchive.net)9, created by the National 
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Cancer Institute (NCI) of the National Institutes of Health (NIH), provide large study cohorts for meaningful 
research development. Furthermore, such datasets10–13 allow for study reproducibility and analyses comparisons 
across varying institutions, promoting increasingly robust conclusions. However, publicly available radiographic 
scans require accompanying expertly annotated ground truth tumor annotations to ensure accurate study com-
parisons and reproducible analyses. Furthermore, any computational analyses, including radiomics-based pipe-
lines, require standardized image normalization and feature parameter selections for consistent analyses6,7,14–16.

To address this limitation, this manuscript provides the ‘I-SPY1-Tumor-SEG-Radiomics’ collection, which 
extends the current TCIA collection ‘I-SPY1’ (https://wiki.cancerimagingarchive.net/display/Public/I-SPY1)17,18, 
with segmentations labels and radiomic features panel for the ACRIN 6657/I-SPY1 TRIAL cohort. The latter 
contains dynamic contrast enhanced (DCE) MRI images of women diagnosed with locally advanced breast 
cancer who underwent longitudinal neoadjuvant chemotherapy17,18. The primary goal is to allow standardized 
expert image annotations and radiomic features for researchers to conduct reproducible analyses. To this end, 
annotations and radiomic features for the baseline (pre-treatment) images of n = 163 women have been pro-
vided. Based on the analyses that needs to be performed, the selected cohort includes women with baseline (T1) 
DCE-MRI with at least two post-contrast images for future studies wishing to explore dynamic assessments of 
breast tumor behavior and treatment response prediction. For each patient visit, three MRI scans are provided 
over the duration of a single contrast administration: a pre-contrast image, and two post-contrast images. All 
provided images are pre-operative and pre-treatment. Two sets of annotated labels are provided: i) structural 
tumor volume (STV) segmentations assessed by an expert board-certified breast radiologist, and ii) functional 
tumor volume (FTV) segmentations, as described in prior studies18,19. While FTV segmentations can provide an 
assessment of tumor vascularity and perfusion, they are limited in describing the entire structural tumor burden 
as they only account for voxels of a region of interest (ROI) above a specific intensity threshold. In contrast, the 
provided STV segmentations annotate the entire structural region (i.e., the whole extent) of the primary lesion. 
The STV segmentations have been used in prior studies in which radiomic features extracted from the STV 
region resulted in improved prognostic performance than FTV values20. Preliminary evaluation of radiomic fea-
tures extracted from STV defined primary lesion volumes has demonstrated improved prognostic performance 
over established clinical covariates21.

Additionally, the data cohort includes a comprehensive panel of radiomic features characterizing breast 
tumor morphology, intensity, and texture. This panel of radiomic features is extracted in compliance with the 
Image Biomarker Standardization initiative (IBSI)7, using the publicly available Cancer Imaging Phenomics 
Toolkit (CaPTk,https://www.cbica.upenn.edu/captk)22–24.

The availability of annotations characterizing the functional active regions around the lesion’s ROI, the entire 
primary lesion structure, and the computed radiomic features can enable for the development of prognostic 
and predictive biomarkers characterizing breast tumor heterogeneity through the direct utilization of the TCIA 
ACRIN 6657/I-SPY1 TRIAL data potential in clinical and computational studies, but importantly can contribute 
to repeatable, reproducible, and comparative quantitative studies enabling direct utilization of the TCIA I-SPY 
collection.

Methods
Data collection.  The ACRIN 6657/I-SPY1 TRIAL17,18 enrolled n = 237 women with their consent from May 
2002 to March 2006. From this cohort, n = 230 women met the eligibility criteria of being diagnosed with locally 
advanced breast cancer with primary tumors of stage T3 measuring at least 3 cm in diameter18. The pre-operative 
DCE-MRI images of 222 women were publicly available via The Cancer Imaging Archive (TCIA)9. From this 
TCIA set, 15 women were excluded for our present study, due to incomplete DCE acquisition scans. A subsequent 

Selected patient characteristics
Cases without future recurrent event 
119 (73% of total cases)

Cases with future recurrent event: 
44 (27% of total cases)

Age (Min., Max., Median) 27.9, 68.8, 48.8 28.8, 68.3, 48.8

Hormone receptor positive 67 (56%) 25 (56%)

HER2 positive 34 (29%) 18 (40%)

Triple Negative 29 (24%) 10 (23%)

Table 1.  Summary of patient histopathologic characteristics from study cohort.

Manufacturer Model Name Number of Cases Percentage

GE Medical Systems
Genesis Signa 95 58%

Signa Excite 16 10%

Philips
Intera 10 6%

Gyroscan Intera 2 1%

Siemens

Magnetom Vision 15 9%

Magnetom Vision Plus 4 3%

Sonata 21 13%

Table 2.  Scanner manufacturer and model name for study cohort.

https://doi.org/10.1038/s41597-022-01555-4
https://wiki.cancerimagingarchive.net/display/Public/I-SPY1
https://www.cbica.upenn.edu/captk


3Scientific Data |           (2022) 9:440  | https://doi.org/10.1038/s41597-022-01555-4

www.nature.com/scientificdatawww.nature.com/scientificdata/

44 women were also excluded due to either incomplete histopathologic data or recurrence free survival (RFS) 
outcome, or missing pre-treatment DCE-MRI scans. This resulted in the inclusion of n = 163 women for this 
study, for whom at least two post-contrast scans from the baseline pre-treatment DCE-MRI scans were avail-
able. Women underwent neoadjuvant chemotherapy with an anthracycline-cyclophosphamide regimen alone 
or followed by taxane. All women underwent longitudinal DCE-MRI imaging on a 1.5 T field-strength system. 
Distributions of patient histopathologic characteristics and image scanner manufacturer details can be found in 
Tables 1 and 2. An exemplary illustration showing the spatial intratumor heterogeneity is shown in Fig. 1. The 
complete clinical metadata is available in the Supplementary Table.

Preprocessing.  The preprocessing procedures involved in preparing the data for further analyses were con-
ducted using the Cancer Imaging Phenomics Toolkit (CaPTk)22–24, and they are outlined as follows:

	 1.	 Image format conversion: For each patient, baseline images were converted to the Neuroimaging Infor-
matics Technology Initiative (NIfTI)25 file format from the publicly available DICOM scans. This format 
does not include any identifiable information as the DICOM headers hold, and only preserves the actual 
imaging information and the necessary information to define the data in the physical coordinates.

	 2.	 Bias Field Correction: All the converted NIfTI images were bias corrected to rectify any non-uniformity 
associated with the magnetic field of the MRI scanner26,27.

	 3.	 Data harmonization: This step is required to ensure consistency in the entire dataset as described below.

	 (a).	 Resampling: The raw I-SPY images have different voxel resolutions, preventing cohesive analysis 
across the entire dataset. To mitigate this, all the images were resampled to the standard 1mm3 iso-
tropic resolution to ensure harmonized processing for computational algorithms. This resolution is 
chosen because this resizes all the images to a size which can fit in the GPU memory (more details will 
be explained later)

	 (b).	 Z-Scoring: After the images are resampled, we Z-score the images using instance level (consider-
ing all timepoints of the given patient rather than entire dataset) statistics of mean and variance. 
Z-scoring is a widely accepted method from extended observations28–31, that normalizing every single 
multi-timepoint scan (i.e., instance-level normalization) to zero mean and a unit variance helps to 
improve algorithmic generalizability and to preserve the relative intensity differences between the 
pre- and post-contrast excitation scans.

DCE-MRI NIfTI volumes.  Three volumes have been provided for each patient from the pre-operative, 
pre-treatment visit. These images include the pre-contrast administration MRI scan (0000), first post-contrast 
image (0001), and second post-contrast image (0002).

Expert tumor annotations.  From the NIfTI images, the functional tumor volume (FTV) segmentation was 
identified within the region of interest (ROI), provided through TCIA, from the signal enhancement ratio image, 
as previously described18,32. In order to generate the structural tumor volume (STV) segmentations, voxels outside 
of the largest contiguous volume region and voxels greater than 2 cm away from the largest contiguous volume 
region, within the FTV, were manually removed. Our expert board-certified breast radiologist then identified the 
primary lesions in each of the n = 163 baseline DCE-MRI images using the manually cleaned, FTV segmentation 
as a guide. The first-post contrast image for each case was used by the radiologist to delineate the entire 3-D pri-
mary tumor segmentation for each patient. Satellite lesions were not considered in the primary tumor segmenta-
tions. ITK-SNAP (www.itksnap.org)33 was utilized to perform the manual delineations.

Computationally-generated annotations.  A 3D Convolutional Neural Network based on U-Net34, with 
residual connections35, was trained on all the preprocessed 3 timepoints to perform automated segmentations of 
the STV and the code has been made available for reproducibility. The models are trained using the Multi-class 
Dice36 Loss function37 with on-the-fly data augmentation techniques such as ghosting, blur, and gaussian noise 
applied in a random manner with a given probability for each type of augmentation38. All the experiments are 
done using nested k-fold cross validation and the median Dice score across the holdout folds is 0.74. An initial 
learning rate of 0.01 is used, which is varied in a linear triangular fashion having a minimum learning rate of 
10−3 times the initial learning rate. We use the Stochastic Gradient Descent optimizer to update weights of our 
network.

Radiomic features.  An comprehensive array of 370 unique features were extracted. These are from 8 differ-
ent feature families, based on intensity statistics (n = 20), morphology (n = 21), histograms (n = 285), Gray-level 
co-occurrence matrix (GLCM) (n = 8), Gray-level run-length matrix (GLRLM) (n = 12), Gray-level size zone 
matrix (GLSZM) (n = 18), Neighborhood gray tone difference matrix (NGTDM) (n = 5), and Local binary patters 
(LBP) (n = 1). We used non-filtered images after the first post-contract injection that were bias-corrected, resam-
pled and z-score normalized. The radiomic features were then extracted from the region defined by the STV. The 
extraction was done using the Cancer imaging Phenomics Toolkit (CaPTk, www.cbica.upenn.edu/captk)22–24. 
CaPTk is an open-source software toolkit, which offers functionalities to extract a wide array of radiomic features 
compliant with the image biomarker standardisation initiative (IBSI)7, the Quantitative Imaging Network6, and 
has been extensively used in radiomic analysis studies39–43. The exact parameters used for the radiomic analysis 
are available through TCIA’s repository, at https://doi.org/10.7937/TCIA.XC7A-QT2044.
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Data Records
We are using the data17 published through the ACRIN 6657/I-SPY1 TRIAL study18. Specifically, we selected 
baseline subjects for whom at least two pre-operative post-contrast scans were available. The raw and gen-
erated data, which includes the preprocessed images in isotropic resolution of 1mm3, the expert and 
computationally-generated annotations, and the extracted radiomic features, have been made available through 
TCIA’s Analysis Results Directory www.cancerimagingarchive.net/tcia-analysis-results/ using https://doi.
org/10.7937/TCIA.XC7A-QT2044. The computationally generated annotations can stand as a benchmark for 
improving segmentation algorithms related to this data in future computational studies.

Technical Validation
Data collection.  The dataset was directly downloaded from TCIA and quantitatively analyzed to ensure all 
images have a defined coordinate system and contain non-zero pixel values. Two cases, 1183 and 1187, had white 
image artifacts outside of the breast region. While these artifacts do not affect intensity distributions within the 
anatomical breast or the corresponding lesion segmentations, they may cause difficulties in image visualization, 
and downstream analyses. These artifacts were present in images directly downloaded from TCIA (illustrated in 
Fig. 2). Additionally, qualitative assessment was performed to look for any visual data corruption.

Preprocessing.  Each step of preprocessing was followed by manual qualitative assessment of the image to 
ensure data validity. In addition, quantitative assessment was performed following the data harmonization step 
to ensure that the entire dataset had the same parametric definition (i.e., same resolution and pixel intensity 
distribution).

Fig. 1  Four representative breast tumors demonstrating spatial intratumor heterogeneity.
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Expert tumor annotations.  The expert annotated STV segmentations were qualitatively assessed, manu-
ally edited and approved by a board certified, fellowship-trained breast radiologist.

Computationally-generated annotations.  The FTV annotations were quantitatively compared with the 
corresponding STV annotations using the Dice score in order to quantify the difference between the two anno-
tations. Additionally, a qualitative analysis was performed for the best and worst performing cases (illustrated in 
Fig. 3).

Fig. 2  Representative image slice where image artifact is present. (a) Visualization of image artifact for case 
1183, (b) visualization of image artifact for case 1187. These image artifacts do not affect the intensity values 
within anatomical breast region.

Fig. 3  Three representative single slice tumor segmentations. (a) First-post contrast image of entire breast. 
(b) Primary tumor region of interest. (c) Functional tumor volume (FTV) segmentation (d) Structural tumor 
volume (STV) segmentations which have been expert annotated. Rows showcase different representative images 
for each case.
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Feature extraction.  Considering the mathematical formulation of these features, it is possible for a division 
by zero to occur (lack of heterogeneity or very small number of voxels). In CaPTk, we provide “not a number” for 
the result of these features to provide a position of clarity for the user to make subsequent downstream analyses 
more coherent based on the entire population. We acknowledge this could be provided as “inf ” instead, but we 
are providing this as “NaN” to have parity between various programming languages and processing protocols.

Usage Notes
This collection of images (both normalized and resampled) and accompanying annotations can be analyzed 
using different tools or software. We provide all the annotations in a research-friendly NIfTI format to allow 
users to read the images and annotations through many programming languages such as C++, Python, R, or 
others. The data is accompanied by a XSLX file that provides additional information about each subject.

Code availability
In favor of transparency and reproducibility, but also in line with the scientific data principles of Findability, 
Accessibility, Interoperability, and Reusability (FAIR)45, we have made the tools used to generate the data for this 
study publicly available38. Specifically, the CaPTk platform22–24, version 1.8.1, was used for all the preprocessing 
steps. CaPTk’s source code and binary executables are publicly available for multiple operative systems through 
its official GitHub repository (https://github.com/CBICA/CaPTk). The implementation and configuration of the 
U-Net with residual connections, used in this study, can be found in the GitHub page of the Generally Nuanced 
Deep Learning Framework (GaNDLF), version 0.0.14 (https://github.com/CBICA/GaNDLF). Finally, ITK-
SNAP33, was used for all the manual annotation refinements.
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