

Identification of Symptoms Associated with irAEs in the **I-SPY Trial**

Presented by: Amrita Basu, PhD

¹Basu A, ¹Umashankar S, ¹Melisko M, ²Lu R, ²Yu H, ¹Musthafa M, ¹Jones T, ¹Yau, C, ²Asare S, ²Pitsouni M, ³Shatsky R, ⁴Isaacs C, ⁵DeMichele A, ⁶Nanda R, ¹Kim M, ¹Wolf D, ⁷Hershman D, ¹Esserman L, ¹Rugo HS

¹University of California, San Francisco, San Francisco, CA

On behalf of the I-SPY2 Investigators

²Ouantum Leap Healthcare Collaborative, San Francisco

³University of California, San Diego, San Diego, CA

⁴Georgetown University, Washington DC

⁵University of Pennsylvania School of Medicine, Philadelphia, PA

⁶University of Chicago, Chicago, IL

⁷Columbia University, New York, NY

Immune checkpoint inhibitors

- Introduced first in the metastatic breast cancer setting with improved outcome in PD-L1 positive disease
- The checkpoint inhibitor, pembrolizumab, is now approved as standard neoadjuvant therapy for high-risk early-stage triple negative breast cancer, with improvements in both response and event free survival
- Associated with immune-related adverse events, some of which are irreversible
 - > Hypothyroidism
 - Adrenal insufficiency (often late onset)
 - ➤ Diabetes (late onset)

D'Abreo and Adams, Nat Rev Clin Oncol, 2019, Emens et al, J. Immunotherapy Cancer, 2021

Immune-related Adverse Events and Associated Symptoms

SYMPTOMS

Diarrhea
Fatigue
Dizziness
Shortness of breath
Rash
Vomiting
Neuropathy
Headache
Nausea
Palpitations
Decreased appetite
Acne
Itching
Insomnia
Muscle pain
Mouth/Throat sores
Joint pain
Abdominal pain
Cough
Constipation
Taste changes
Swelling
Blurry vision
Pain urination
Dry eyes

Martins et al, 2019, Nature Reviews Clinical Oncology

Objectives

- Predict which patients are at risk for developing a serious irAE to enable early consideration of optimal treatment choices
- Understand which symptoms during treatment most contribute to impairment in overall quality of life

Balancing Toxicity and Efficacy: Developing a Standardized Method to Predict Immunotherapy Toxicities

The I-SPY 2 Trial Schema

Dataset Composition

ASSESSMENTS

Clinician-assessed adverse events (CTCAE v 5.0)

- Included all grade 1-4 AEs
- Collected weekly to every 2-3 weeks depending on chemotherapy schedule
- Follow-up: up to 1 year

Patient-reported Outcomes (PRO-CTCAE/PROMIS)

- Patients filled in in at least 2 timepoints including baseline
- Surveys were collected weekly for symptoms, and monthly for QOL
- Surveys collected through 24 months
- Reported using the Likert scale 1-5 (from none/mild to severe)

STUDY POPULATION

- 482 patients prescribed at least 4 doses of immunotherapy in combination with chemotherapy (CTCAE)
- 346 patients (PRO-CTCAE/PROMIS), 72% completion rates, 20% overlap with CTCAE

irAEs Included in the Data Analysis

OUTCOMES VARIABLES – CTCAE Defined

- Hypothyroidism (12%)
- Adrenal insufficiency (AI) (8%)
- Pneumonitis (4%)
- Colitis (1%)

Demographic distribution of irAEs

	Overall (n=482)	Pneumonitis (n=20)	No Pneumonitis (n=462)	Colitis (n=6)	No Colitis (n=476)	Adrenal Insufficiency	No Adrenal Insufficiency	Hypothyroidism (n=61)	No Hypothyroidism
	(n-462)	(11–20)	(II—402)	(11-0)	(11–470)	(n=38)	(n=444)	(11-01)	(n=421)
Age									
Mean (SD)	47.6 (11.6)	54.0 (9.2)	47.4 (11.6)	51.6 (12.2)	47.6 (11.6)	48.5 (11.7)	47.6 (11.6)	46.4 (10.3)	48.5 (11.7)
Median	47.3 (20-79)	55.3 (35-69)	47 (20 – 79)	54.5 (32 –	47(20 – 79)	49.5 (31 – 79)	47 (20 – 76)	45.5 (28.8 – 71)	47.9 (20 – 79)
(Min-Max)				66.2)					
Race									
American	3 (.6%)	1 (5 %)	2 (.4%)	0 (0%)	3 (0.63%)	0 (0%)	3 (0.7%)	1 (1.6%)	2 (0.5%)
Indian Alaska									
Native									
Black	60 (12.4%)	2 (10%)	58 (12.6%)	1 (16.7%)	31 (6.5%)	5 (13.2%)	55 (12.4%)	2 (3.3%)	58 (13.5%)
White	382 (79.3%)	16 (80%)	366 (79.2%)	4 (66.7%)	378 (79.4%)	32 (84.2%)	350 (78.8%)	53 (86.9%)	329 (78.1%)
Asian	32 (6.6%)	0 (0%)	32 (6.9%)	1 (16.7%)	31 (6.5%)	1 (2.6%)	31 (7.0%)	2 (3.3%)	30 (7.1%)

- > Pneumonitis rates were higher in patients over 50 than under 50 (P<.01)
- No other significant associations were observed

Cumulative incidence of irAEs over time

Goal: Predict which patients were at risk for developing an irAE using symptom trajectory

- Symptoms leading up to an AE may be interconnected- "symptomics"
- Knowledge about which individual or constellation of symptoms (mild or severe) leading up to an AE are more predictive or sentinel
- Important implications for individualizing therapy to minimize toxicity

Methods: Predicting who is at risk for developing an irAE

Cohort and data

All patients on immunotherapy

Created separate model for each irAE

Method

Elastic net regression

Input: Area under curve for each symptom

Output: Grade of irAE

Evaluation of Results

Error estimates for each model

Methods: Calculation of Symptom Burden

$$AUC(symptom) = \sum_{n=1}^{n} Grade * Duration$$

- Incorporated duration of symptom (days)
- Symptoms only up to the diagnosis of the irAE
- 4-12 weeks after treatment Initiation

Results: Early Symptoms Associated with Hypothyroidism

Results: Early Symptoms Associated with Adrenal Insufficiency

Early onset of symptoms by 6 weeks was associated with subsequent development of adrenal insufficiency

Error Estimate: 25%

Results: Co-occurring Symptoms up until 6 week timepoint

Results: Removal of specific symptoms significantly decreases model performance

ADRENAL INSUFFICIENCY **HYPOTHYROIDISM Palpitations** PiljaddA basea10ad Nausea Mouth Throat Sores §nijimo√ Muscle Pain ^{nisq ələz}nM Nausea Itching Blurry Vision

Methods: Patient Reported Outcomes in I-SPY

ePRO launched in 2021 across 28 sites

Results: PRO enables us to evaluate symptoms and their impact on quality of life longitudinally

➤ Joint and muscle pain starting at week 4 is most predictive of reduced QOL at week 12

Poster ID: P5-07-03

Poster Title: The Association Between Symptom Severity

and Physical Function among Participants in I-SPY2

Thursday, 5 pm CT

Conclusions and Next Steps

- Early onset of symptoms may predict subsequent risk for irAEs
 - Understanding the risk factors for developing an irAE will help to optimize intensity of surveillance and potential treatment modification to minimize the impact of toxicity
- Further confirmation of this model is required
 - Analysis of PRO is ongoing
 - Analysis of genetic predictors to identify who is at risk of developing a severe irAE

Acknowledgements

WORKING GROUP CHAIRS

Study Pls: L. Esserman
Agents: L. Esserman, D. Yee
Statistics: C. Yau
Operations: C. Isaacs
R. Shatsky

Patient Advocates: J. Perlmutter Imaging: N. Hylton
PRO/QOL: D. Hershman

A. Basu

Informatics: A. Asare, A. Basu

Biomarkers: L. van 't Veer Ct DNA: A. DeMichele QED: A. DeMichele IP Project Oversight: A. Barker

Surgery: J. Boughey, R. Mukhtar Safety: H. Rugo, R. Nanda Clinical Operations: M. Pitsiouni

Pathology: F. Symmans
IRB Working Group: T. Helsten
Return of Results: A. DeMichele

SITE PRINCIPAL INVESTIGATORS: 28 sites

City of Hope: Jennifer Tseng Cleveland Clinic: Erin Roesch Columbia: Meghna Trivedi Denver: **Anthony Elias** Kevin Kalinsky Emory: Georgetown: Claudine Isaacs Chaitali Nangia HOAG: Huntsman: Christos Vaklavas Loyola: Kathy Albain Mayo: Judy Boughey Moffitt:

OSU:

OHSU:

Rutgers:

Sanford:

Judy Boughey Heather Han Nicole Williams Zahi Mitri Coral Omene Amy Sanford Sparrow: Brittani Thomas
UAB: Erica Stringer-Reasor
UC Davis: Mili Arora
UChicago: Rita Nanda
UCSD: Anne Wallace

UC Davis:
UChicago:
UCSD:
UCSF:
UCSF:
UCSF:
UMN:
URMC:
URMC:
UPenn:
UPenn:
Amy Clark
Evanthia Rous

USC: Evanthia Roussos Torres
Vanderbilt: Laura Kennedy
WakeForest: Alexandra Thomas

Yale: Tara Sanft

DSMB & INDEPENDENT AGENT SELECTION COMMITTEE (IASC) Members

PROJECT OVERSIGHT

Anna Barker/USC; Patrizia Cavazzoni/FDA CDER; Reena Phillip/FDA; Janet Woodcock/FDA; Eric Rubin/Merck, FNIH Biomarker Consortium; Lisa LaVange/UNC; Ken Ehlert/UHG

QUANTUM LEAP HEALTHCARE COLLABORATIVE/ UCSF:

CEO: J. Palazzolo

Director of Clinical Operations: M. Pitsiouni

Oncology Clinical Operations:

T. Nguyen, W. Chang, H. Prisant, A. Hastings, B Nwaogu, S. Ezrati, Z. Patel, P. Vyas, A. Snew, H. Patel, E. Buell, J. Engleman, N. Allen

Safety:

M. Salem (QLHC), A. Kelley, S. Bezawada, B. Smolich, M. Bozorginia (CCSA)

Site Regulatory: E. Guerrero, S. Rice

Drug Management:

F. Chu, A. Spivak, A. Sangwan, J. Ritchie

Manuscripts/Strategy: L. Sit, J. Matthews

Collaborations

P. Henderson, S. Jafari, H. Fraser

Biomarkers/Specimens:

L. Brown Swigart, G. Hirst, E. Chip Petricoin, J. Wulfkuhle, M. Campbell, M. Magbanua, S. Venters, A. Aye Ma, E. Bergin, C. Yau, D. Wolf, K. Papuga, P. Glenn, L. Torres Altamirano, & collaborators

Imaging Lab:

J. Gibbs, W. Li, D.Newitt, N. Onishi, M. Watkins, T. Bareng

Data Analysis, Data Management & IT:

C. Yau, A. Basu, G. Peterson, A. Wilson, D. Dimitru, L. Weiss, C. Russell, A. Glowacki, P. Beineke, I. Dunn, A. Asare, T. Gannamaneedi

PRIOR COLLABORATORS and STAFF

A. Forero-Torres, L. Korde, R. Murthy, D. Northfelt, Q. Khan, K. Edmiston, R. Viscusi, B. Haley, A. Zelnak, J. Sudduth-Klinger, N. Lisser, M. Buxton, M. Paolini, J. Lyanderes, R. Singhrao, S Asare, E. Sponti, F Xu., S. Khozin, R. Califf, Verily Life Sciences, C. Austin, B. Consultants, R. Lu; R. Schwab

Participating Organizations

FUNDING PARTNERS

William K Bowes, Jr. Foundation

Foundation for the National Institutes of Health (FNIH)

Give Breast Cancer the Boot

University of California San Francisco (UCSF)

The Biomarkers Consortium

The Breast Cancer Research Foundation (BCRF)

Safeway, an Albertsons Company

California Breast Cancer Research Program

Breast Cancer Research - Atwater Trust

Stand Up to Cancer

National Institutes of Health (NIH/NCI)

INVESTIGATIONAL AGENT PROVIDERS

AbbVie

Amgen Merck

Roche/Genentech

Synta Pharmaceutical Puma Biotechnology

Plexxikon

Daiichi Sankyo

AstraZeneca

Seagen Dynavax

Regeneron **G1** Therapeutics

GSK Sanofi Eli Lilly Apotex

Athenex Byondis

ALX Oncology

Ambrx

Vyriad

STUDY SPONSOR

Quantum Leap Healthcare Collaborative (QLHC)

DATA SUPPORT

BIOMARKER PLATFORMS

CCS Associates, Inc Salesforce.com, Inc. OpenClinica, LLC

Formedix

OpenSpecimen Natera, Inc

Agendia

Hologic, Inc.

The Translational Genomics Research Institute (TGen®)

University of California San Francisco (UCSF)

Illumina

George Mason University (GMU)

Akoya Biosciences Inc.

Delphi